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Abstract

HERMES is a Deep Inelastic Scattering experiment located at the DESY facility in Ham-

burg, Germany, and uses longitudinally polarized 27.5 GeV electrons or positrons from

the HERA storage ring to scatter off fixed, polarized nucleon targets. From the rate of

detected scattered beam leptons it is possible to measure the structure function g1 which

enters the cross section as an unknown, given the lack of knowledge of the internal struc-

ture of the nucleons. This function is in turn dependent on the distribution of spin inside

the nucleons. This field of research was triggered by the discovery, in the late 1980’s by

the EMC experiment, that the total spin 1/2 of nucleons did not come entirely from the

contribution of quarks, as expected.

The deuteron structure function gd1 has been measured with unprecedented precision

in this thesis from 10 million DIS events collected by the HERMES experiment during

the years 1998 and 2000. The data cover the kinematic range 0.0041< x <0.81 and 0.21<Q2 <7.3 GeV2, and have been divided into 49 x and Q2 bins, where x is the fraction of

nucleon’s momentum carried by the struck quark andQ2 is the negative four-momentum

transfer to the nucleon. The extraction of gd1 from data requires a deep knowledge of the

detector performance for the dis-entanglement of effects possibly due to malfunctions.

Statistical tests were performed on the data to study possible unwanted dependencies.

QCD fits at next-to-leading order have been performed to world data on the structure

functions gp;n;d1 (x;Q2). They have in turn been used to extract the polarized distributions�qp;nNS(x;Q2), ��(x;Q2) and �G(x;Q2). A method has been developed to propagate the

statistical and systematic uncertainties on gp;n;d1 to the extracted distributions. The inte-

grals of these distributions over the measured range of the variable x have been obtained



for four Q2 reference values and also from the HERMES data alone.

The results in this thesis clearly demonstrate that in the measured x range gluons are

positively polarized, which may explain the spin deficit in the nucleon known as the spin

puzzle.
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Chapter 1

Introduction

The structure of nucleons can be studied with experiments analogous to Rutherford’s,

where in this case particles scatter off target nucleons rather than the nucleus. From

the distribution of scattered particles it is possible to gain information on the nucleon’s

constituents.

At very low beam energies, the constituent model describes the static properties of

nucleons like their masses, spins and magnetic moments in terms of quarks constituents.

The nucleons are seen as irreducible representations of the SU(3) symmetry group.

In Deep Inelastic Scattering (DIS) ([1]) a lepton beam scatters off target nucleons with

the exchange of a virtual probe, such as a photon. If the virtual photon four-momentumQ2 is large enough, the photon interacts directly with a quark carrying a fraction x of

the nucleon’s momentum. The nucleon breaks up, and the fragments recombine into

hadrons, which are then detected. Since the lepton is a point-like particle, the distribution

of scattered particles directly depends only on the nucleon’s internal structure.

At very high Q2 nucleons appear to be made of free or quasi-free quarks, because the

strong coupling constant decreases asymptotically: quarks interact with the exchange of

gluons, the carriers of the strong interaction. The nucleon is thus seen as an extremely

active environment, where quark-antiquark pairs (the sea) are continuously created and

destroyed.

When target and/or beam are not polarized, then the distribution of momentum car-

ried by quarks and gluons can be studied by DIS, and very precise data is available, with

high statistics, of which Ref. [2] and Ref. [3] are only a few examples. For photon ex-
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change, the differential cross section depends on two unpolarized structure functions F1(x)
and F2(x), which in zero-th order QCD can be written as ([4])

F2(x) =Xi e2i x qi(x) F1(x) = 12xF2(x) = 12Xi e2i qi(x); (1.1)

where qi denotes the distribution of quark iwith charge ei, and the sum runs over quarks

and antiquarks.

When both target and beam are polarized, the distribution of spin inside the nucleon

can be studied. The differential cross section acquires a dependence on polarized structure

functions. The analogue of F1(x) in the polarized case is

g1(x) =Xi e2i�qi(x) ; (1.2)

where �qi(x) = q+i (x) � q�i (x) is the difference between parton distributions with po-

larization parallel to the nucleon’s spin and the corresponding distributions with anti-

parallel polarization.

Ideally quark and antiquark distributions inside the proton are not expected to de-

pend on Q2, but in practice they do. This can be explained when one considers that the

processes that the virtual photon accesses change with the four-momentum transferred.

At low Q2 the photon is not sensitive to gluon-initiated processes, and can not distin-

guish the sea quarks. When Q2 increases the photon can probe the most inner structure

of nucleons, and becomes sensitive to the sea. As a result, when one considers QCD

effects like photon-gluon fusion (�g ! q�q) and gluon radiation (�q ! gq), the structure

functions acquire a dependence on Q2.

The total spin of a nucleon is 1/2, which must come from contributions from the total

angular momentum L of quarks and gluons, and from the spin carried by gluons (�G)

and quarks (��): 12 = L+ 12��+�G : (1.3)

Naively one would expect that the static model results apply at higher energies too, and

that the spin is carried by quarks for the most part.

Experiments to study the nucleon’s spin are more difficult to realize than unpolar-

ized ones, because of the necessity of both polarized target and beam. The pioneer EMC
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experiment ([5]) in the 1980’s used polarized high energy muons incident on polarized

targets to determine the polarized structure function gp1. From the integral of gp1 over the

whole range of the variable x (between 0 and 1), using some assumptions on SU(3), it

is possible to extract ��. The astonishing result was that the quarks inside the nucleon

contributed very little (�� ' 4%) to the spin of the nucleon. Even though the interpreta-

tion of the EMC results is now different, the result remains that the angular momentum

and gluon contribution to the spin may be relevant.

The EMC results generated the so called spin puzzle and gave way to many polar-

ized DIS experiments, mainly concentrated at the CERN and SLAC laboratories. The

most important CERN experiment was SMC, an upgrade of the EMC detector. In this

experiment, 100-190 GeV muons scattered off butanol, deuterated butanol, and ammo-

nia targets. One remarkable feature of the experiment was the simultaneous use of two

polarized targets with opposite polarization. This greatly reduced systematic uncertain-

ties related to luminosity and detector performance. Also, the high beam energy led to

high Q2 ' 10 GeV2, and very low x ' 0.003, important to determine the behavior of g1
at low x for the calculation of the integral of g1. On the other hand, the SMC detector

had the disadvantage of having small dilution factors: the dilution factor is the ratio of

polarizable nucleons divided by the total number of nucleons in the target. In the SMC

experiment this factor varied from 0.13 to 0.23. The target polarization was ' 86% for

protons and '25-50% for deuterons.

The SLAC experiments (E142, E143, E154, E155) all used the same polarized electron

beam, but they differed in the targets (E142 and E154 used 3He, E143 and E155 used

NH3, ND3 and LiD), and small changes in the spectrometers. Also these experiments

had to face the problem of the small dilution factors. In the spectrometers used for E142

and E143 the electrons were detected at scattering angles of 4.5o and 7.0o. Electrons were

identified by Cerenkov detectors and lead-glass calorimeters, and scintillator hodoscopes

provided tracking. E154 and E155 used different scattering angles: 2.75o, 5.5o and a new

spectrometer at 10o. One obvious problem of these experiments was the low geometrical

acceptance.

The HERMES experiment ([6]) studies the spin structure of the nucleon through DIS

of longitudinally polarized electrons (or positrons) on longitudinally polarized nucleons.
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One of the strengths of HERMES is the purity of the target: the dilution factor is 1 for

hydrogen and deuterium. The polarized gas (H, D, 3He) enters into a windowless stor-

age cell located directly inside the beam pipe. Gas escapes out of the ends of the cell

and is pumped away by the high speed differential pumping system. The target po-

larization can be as high as 92% while beam polarization can reach 55%. HERMES is a

forward spectrometer divided in two symmetric top-bottom halves. Drift chambers just

downstream of the target window and before and after the magnet measure the scatter-

ing angle and momentum of charged particles. The acceptance of the detector covers a

large kinematic range for the scattered positron. The HERMES particle identification sys-

tem (RICH, TRD, Preshower, Calorimeter) is able to identify the scattered electron and

hadrons produced in coincidence.

There are many ways to access the distribution of spin among the nucleon’s con-

stituents. In inclusive scattering only the scattered lepton is detected, and in this way

there is sensitivity on the structure function g1(x;Q2). Even though g1 depends on a spe-

cific combination of polarized distributions, it is possible to separate quark and gluon

distributions using their different Q2 dependence. This is theoretically a very clean way

to obtain the polarized distributions. Unfortunately the relatively small amount of data

available requires the use of assumptions, such as SU(3) symmetry and hypotheses on

the shape of the distributions at an input scale Q20.

In semi-inclusive scattering ([7], [8], [9]), one or more hadrons are detected in coinci-

dence with the lepton, and the charge of the hadron, together with its valence quark

composition, provide sensitivity to the flavor of the struck quark. Many assumptions

are needed in order to extract the polarized quark distributions, including models on the

fragmentation of nucleons. Also, experiments need to identify efficiently as many types

of hadrons as possible, to be able to separate the flavors. Since this was not possible with

all flavors, assumptions often had to be introduced on the sea polarizations �qs. For

example �qs(x)=qs(x) or �qs(x) were assumed to be a constant for all flavors. Recently,

though, given the excellent hadron separation capabilities of the HERMES experiment,

these additional assumptions could be dropped, thus allowing the extraction of the po-

larization distributions of u, d, �u, �d and s quarks ([10]) in the range 0:023 � x � 0:6 and1 � Q2 � 15 GeV2.
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This thesis deals with the measurement of the deuteron polarized structure function

gd1 from data collected by the HERMES experiment in the spring of 1998 and in 2000, for

a total of almost 10 millions inclusive DIS events.

The first chapter is an overview of the HERMES experiment. The detector is treated

in detail, with special emphasis to the particle identification system, which is able to dis-

criminate between hadrons and leptons, and among hadrons. For the g1 analysis only a

good separation is needed between hadrons and leptons. Studies performed on the trig-

ger efficiency conclude the chapter. These studies were necessary to the g1 measurements

in the low momentum region. The efficiencies were found to have reached the plateau

after the rise in the region of interest from lower momenta, but a new effect was found:

one detector showed efficiencies as low as 90% and had to be corrected. The inefficien-

cies do not affect the extraction of g1, which is obtained from ratios of cross sections, but

can affect measurements of total cross-sections. For this reason correction functions were

obtained.

The second chapter presents an introduction to deep inelastic scattering, and the mea-

surement of g1 in the kinematic region accessible by the HERMES detector 0.0041 < x <
0.81 and 0.21 < Q2 < 7.3 GeV2. Data were divided into 27 x bins, and up to 3 Q2 bins,

where allowed by enough statistics. Many statistical tests were performed to study the

stability of the results, and possible dependences, like on the trigger efficiencies or on

the beam helicity. The data have been corrected for charge symmetric backgrounds and

hadron contaminations. For the final extraction information was needed from unpolar-

ized data, like a parameterization on the structure function F1. The final results on gd1
represent the most precise measurement so far.

The third chapter introduces QCD effects: the Operator Product Expansion (OPE),

which was developed explicitly to study DIS and describe structure functions in terms of

matrix elements of quark and gluon operators, which become more and more important

at small Q2, where non-perturbative effects play a role. The evolution in Q2 of parton

distributions described by the Altarelli-Parisi equations is also introduced, in leading

and next-to-leading-order. The effect on the structure functions is discussed.

Chapter 4 shows how the new measurements of gd1 can be used together with world

data on gp;n;d1 to extract fits to the polarized quark and gluon distributions as a function
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of x, exploiting the Q2 range of measurements. A method is developed to propagate the

statistical and systematic uncertainties from gp;n;d1 data into the polarized distributions.

Integrals of gp;n;d1 over the measured range of x are obtained for four Q2 values.

6



Chapter 2

The HERMES experiment

2.1 HERMES

HERMES is a fixed-target experiment located at the east straight section of the HERA

electron (positron)-proton storage ring at the DESY laboratory in Hamburg. HERMES

was designed to optimize the measurement of quantities related to the nucleon’s spin.

For this it needs high beam current, high values of target and beam polarization, high

target density, and a large detector acceptance.

One of the strengths of HERMES is the purity of its target: the dilution factor (i.e. the

ratio of polarizable nucleons divided by the total number of nucleons in the target) is 1

for hydrogen and deuterium.
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Figure 2.1: Schematic side view of the HERMES spectrometer

7
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0.22θ=

0.14θ=

θ=0.17

0.04θ=
2.91

3.37

0.23

6.05ϕ=

ϕ= ϕ=

ϕ=

TOP DETECTOR

BOTTOM DETECTOR

Figure 2.2: HERMES angular acceptance. The dotted lines indicate the acceptance in the
polar angle �, while the dashed circles refer to the acceptance in the azimuthal angle '.
The plot represents a scaled version of the actual acceptance.

HERMES [6] is a conventional forward spectrometer with a dipole magnet providing

an integrated field of 1.3 Tm. The spectrometer is divided into two symmetric top-bottom

halves by the HERA beam lines, which are shielded by a horizontal iron plate.

Fig. 2.1 shows a schematic of the detector setup. The particle acceptance in the scat-

tering angle � is limited at small angles to 0.04 rad by the iron plate, while the maximum

angles in the horizontal and vertical directions are 0.17 and 0.14 rad, respectively (see

Fig. 2.2). As is shown in Fig. 2.1, each half of the detector has a series of drift-chamber

planes for tracking. An angular resolution of Æ� < 0:6 mrad and a momentum resolu-

tion of Æp=p � 1% are achieved. The trigger is formed by a combination of signals from

three hodoscopes and a lead-glass electromagnetic calorimeter. Particle identification

is achieved by a probability analysis of the signals from the transition radiation detector,

the preshower hodoscope and the calorimeter. In the results presented here the efficiency

for electron identification was on average 98%, while the hadron contamination was es-

timated to be less than 0.5%. The luminosity was measured by two small NaBi(WO4)2
electromagnetic calorimeters [12] detecting the Møller (Bhabha) scattering of the beam

electrons (positrons) off the target electrons.

Each component of the HERMES experiment will be discussed in this chapter, includ-
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Figure 2.3: The HERA ring.

ing particle identification and trigger efficiencies.

2.2 The HERA beam

HERMES makes use only of the polarized positron or electron beam from the HERA

storage ring. Since HERA is unable to provide polarized protons, HERMES uses a polar-

ized fixed target. The electron beam is naturally highly transversely polarized due to a

small asymmetry in the emission of synchrotron radiation: since the probability of spin

flip to the direction parallel to the magnetic field is slightly higher than the spin-flip into

the anti-parallel direction, in time there is a net polarization build up of the beam in the

direction parallel to the magnetic field. This is the Solokov-Ternov effect[13]. The time

dependence of the beam polarization is described by the equation:PB(t) = Pmax(1� e�t=� ) ; (2.1)

where Pmax is the asymptotic polarization, and � the rise time constant. In a real machine

de-polarizing effects such as orbital effects in the synchrotron radiation as well as mag-

netic and alignment imperfections prevent the polarization from reaching its maximum

and have the net effect of lowering both the maximum polarization and the rise time
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2.2. THE HERA BEAM

from the theoretical values. These theoretical valuesP THEORYmax = 85p3 = 92:38% �THEORY = P THEORYmax m2e2�3e2~5 = 37 min (2.2)

may be compared to the experimentally determined values of � 55% and � 22 minutes.

Here me and e are the electron mass and charge,  is the speed of light, ~ is the Planck

constant, � is the bending radius, and  = E=me, E being the electron energy.

Two polarimeters measure the polarization of the beam: the transverse polarimeter

located in the western section of HERA, and the longitudinal polarimeter located in the

HERMES region (see Fig. 2.3). The average beam polarization for 2000 was< PB >=0.53.

2.2.1 Longitudinal polarimeter

Spin rotators are positioned upstream and downstream of the HERMES area and serve

to rotate the beam polarization from transverse to longitudinal (as needed for HERMES

physics) and then back again. A measurement of longitudinal polarization was neces-

sary for HERMES, so in 1997 the longitudinal polarimeter ([14]) became operational. A

schematic view of the HERA east section with the longitudinal polarimeter is shown in

Fig. 2.4. A laser beam of circularly polarized light with an energy of 2.33 eV is guided by

remotely controlled mirrors in a vacuum pipe for 72 m until it reaches the electron beam.

It then scatters off the electron beam 52 m downstream of the HERMES interaction point.

Because of the high boost of the electron beam, the resulting back-scattered Compton

photons are very focused and are contained within a small region centered around the

direction of the electron beam. The bending magnet BH90 bends the electron beam away

from the Compton scattering, so that the Compton back-scattered light and the beam

BH90

HERMES target

Compton photons calorimeter

BH39

.
13 m39 m 16 m38 m

HERMES experiment

laser - electron

.
HERA electron beam

laser beam

interaction point

Figure 2.4: Overview of the longitudinal polarimeter.
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slightly separate. A small calorimeter located 16 m downstream of BH90 measures the

energy deposited by the Compton photons. The differential cross section for Compton

scattering of circularly polarized light off of polarized electrons is related to the known

unpolarized differential cross section d�=dE0 and to the photon and beam polarizationsP and Pb by the relation d�dE = d�dE0 (1 + PPbA) ; (2.3)

where A is an asymmetry, known exactly. The total energy deposited into the calorime-

ter per electron bunch is measured, thus providing the beam polarization measurement.

If the measured cross sections are the same for photon helicity � = �1 then the beam

is not polarized. The photon polarization is on the order of 0.999 and it is checked by

means of a polarization analyzer before and after the collision with the beam.

The polarization measurement is made once every minute, and it has an absolute

statistical accuracy of 0.01. Systematic uncertainties on the measurement are estimated

to be of the order of 2%, and come from sources of false asymmetry that can contribute to

give a wrong asymmetry measurement, the measurement of the laser light polarization,

and electron beam instability.

2.2.2 Transverse polarimeter

The transverse polarimeter operates on similar principles to the longitudinal one. It uses

an Argon-ion laser which produces photons with an energy of 2.41 eV. As with the longi-

tudinal polarimeter, the beam of light is brought to interact with the electron beam by use

of a series of mirrors. The backscattered Compton light is collimated both horizontally

and vertically and is measured by a calorimeter about 65 m away. The TPOL calorimeter

is separated into two pieces, one above and the other below the beam pipe.

The process used to recover the value of the beam polarization involves the fact that

the cross section for circularly polarized light on transversely polarized leptons has a

spin dependent azimuthal distribution: the asymmetry constructed from the shift in ver-

tical direction of the two light polarization states is proportional to the electron beam

polarization.
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Figure 2.5: Schematic picture of the luminosity monitor, with the hit distribution (the
black boxes have a size proportional to the number of hits). The shaded area corresponds
to the beam acceptance.

2.3 The luminosity monitor

Since the luminosity cannot be measured by placing a detector inside the beam-pipe, an

indirect measurement is obtained from the scattering rate of beam electrons (positrons)

off the atomic target electrons, in the elastic Møller (Bhabha) reactione�(+) + e� ! e�(+) + e� (2.4)

and on the annihilation e+ + e� ! 2 (2.5)

in the case of a positron beam. The kinematics of the scattering are precisely defined:

the scattered particles each carrying half the beam energy exit the beam-pipe at 7.2 m

from the scattering point, where two identical calorimeters are placed in order to detect

the two particles in coincidence. Each calorimeter, 2.2x2.2x20 cm3 in size, consists of 12

crystals of NaBi(WO4)2, as shown in Fig. 2.5, each coupled to a photo-multiplier. The

luminosity is then obtained from the ratio of the measured rate over the cross section

for the process, which is precisely known. As radiation at beam injection and dump

can damage the calorimeters, they are usually moved 20 cm away horizontally from the

beam-pipe at those times.
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2.4 The target

One of the strengths of the HERMES experiment is its target ([6]), because of its purity

and its position internal to the beam-pipe, so that the electron beam does not encounter

any unpolarized material before colliding with the target atoms. A schematic of the target

is shown in Fig. 2.6.

An atomic beam source (ABS) is used to create the target atoms, at a rate of approx-

imately 6.4�1016 atoms/sec. The atoms are then injected from the top into the target

cell. The whole system is surrounded by a solenoidal magnet providing a homogeneous

field of up to 1.5 Tm parallel or anti-parallel to the HERA beam direction. The target

cell is 40 cm long and 75 �m thick, with an elliptical cross section, and is made of pure

aluminum. The gas is then pumped away by a differential pumping system at each end

of the storage cell, giving the target density a characteristic triangular density profile. A

cooling system, which brings the temperature down to 30 K decreases the velocity of the

atoms, allowing them to spend more time in the cell, and increasing the target density to

approximately 1014 atoms/cm2.

The polarization is quickly measured by a Breit-Rabi polarimeter (BRP) and the polar-

ization is reversed about every minute to reduce systematic effects. A small fraction of

deuterium atoms is extracted from the target cell through a tube mounted on the target

cell, where through radio frequency transitions and sextuple magnets it is possible to

isolate the nuclear spin. Mass spectroscopy allows the measurement of the occupancy

number of the selected state, and the atomic polarization. The target gas analyzer (TGA)

measures the fraction of dissociated target atoms in the cell. Since the target atoms re-

combine into molecules in the cell, corrections have to be made to the polarization value

measured by the BRP. The polarization of the gas inside the cell, PT , can be extracted

from the values measured by the TGA and BRP:PT = �0PBRP [(1� �r)� + �r℄ ; (2.6)

where �0 is the initial fraction of atoms leaving the ABS, �r is the fraction of atoms that

do not recombine to molecules in the target cell, and � (assumed to be 0.5) is the nuclear

polarization of the recombined molecules relative to the nuclear polarization of the atomsPBRP .
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Figure 2.6: Scheme of the HERMES target.

The values of �0 =0.934, �r =0.957, PBRP =0.81 characterize the 1998 data set. In

2000 the target conditions were extremely stable, and P+ = 0:851 and P� = 0:840 are the

averaged constant values of target polarization in the two polarization states. They have

been used in the g1 analysis presented in this thesis, with a relative error of 8% and 4%

for 1998 and 2000.

2.5 The tracking system

The Tracking System consists of a set of drift chambers DVC, two front chambers FC1/2,

three magnet chambers MC1/3 and two back chambers BC1/2 per detector half. It serves

many purposes. First, it has to provide a measurement of the position of the scattering

vertex in the target. Second, through the bending of the track in the magnetic field, it

gives the track’s momentum. Third, it has to associate tracks to hits in the particle iden-

tification detectors. The overall tracking efficiency is larger than 95%, with a momentum

resolution of 0.7 to 1.25% in the total kinematical range, and an angular resolution Æ�
lower than 0.6 mrad. Many tracking chambers have wires oriented along three planes, of

which one is the vertical direction (X plane) to provide the x coordinate, while the other

two are tilted +30o and -30o (U and V planes). There are no chambers with wires in the

horizontal direction since they would sag, given the length of the chambers.
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2.5. THE TRACKING SYSTEM

2.5.1 The front chambers

The DVC’s were proposed in 1995 to improve the tracking in front of the magnet. They

became operative in 1997. Both the FC and DVC are a set of 6 planes of alternating anode

and cathode wires, separated by cathode planes. The DVC and FC are 1.1 m and 1.6 m

away from the target, and their resolutions are of the order of 220 �m.

2.5.2 The back chambers

The BC’s form the tracking system behind the magnet. They are arranged in four sets,

two above and two below the beam-pipe, two directly behind the magnet and two down-

stream, after the RICH. Each chamber consists of six wire planes alternated with cathode

foils. The wires in the first and last pair of planes are tilted by 30o. They measure the

track direction after the magnetic field, thus providing a measurement of momentum.

Their resolutions are approximately 210 �m for BC1/2 and 250 �m for BC3/4.

2.5.3 The magnet

The HERMES magnet provides an integrated magnetic field of 1.5 Tm, with the magnetic

field in the vertical direction, so that the particles are deflected in the horizontal direction.

The magnet size sets the limits on the geometrical acceptance to the spectrometer: �
170 mrad in the horizontal direction and � 140 mrad in the vertical direction, while the

shielding plate gives the lower limit to the vertical acceptance, setting it to � 40 mrad.

The tracks are reconstructed independently in the front and back tracking system and

then they are matched to the center of the magnet by a fitting procedure. Three sets

of Magnet Chambers are located in the gap of the magnet, as shown in Fig. 2.1. Each

chamber is made of 3 planes in the XUV orientations. They were designed to help match

the front and back tracks, but they turned out to be very useful also in the detection of

low energy particles that are then deflected away by the magnetic field, and are then not

detected by the back chambers. Their resolution is on the order of 1 mm.
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aluminum box

mirror array

soft steel plate
PMT matrix

aerogel tiles

Figure 2.7: Left: the RICH detector. Right: angle of Cerenkov emission as a function of
momentum for pions, kaons and protons, in aerogel and gas. At low momentum the
plot shows that the aerogel gives a good discrimination among particles, while the gas is
good at high momentum, where the aerogel curves tend to overlap.

2.6 The particle identification system

The HERMES spectrometer includes four particle identification detectors: a Cerenkov

detector, replaced by a Ring Imaging Cerenkov detector (RICH) in 1998, a Transition

Radiation Detector (TRD), a preshower (H2) and an electromagnetic calorimeter (CALO).

2.6.1 The RICH

The threshold gas Cerenkov detector present at HERMES from 1995 to 1997 was replaced

in 1998 with a dual radiator Ring Imaging Cerenkov Detector (RICH), see Fig. 2.7.

The RICH is the first particle identification detector a particle meets. It is located be-

tween the drift chambers BC1/2 and BC3/4. It allows the identification of pions, kaons

and protons over a large momentum range, with a low contamination and a high effi-

ciency.

Most of the hadrons present at HERMES have a momentum between 2 and 15 GeV.

The scattered particles encounter a first radiator consisting of an array of 17x5 silica aero-

gel tiles, followed by a 4000 l volume of C4F10 radiator gas. Depending on the � of the

particle, it will emit Cerenkov radiation in the aerogel, in the gas, or in both�. The light is

then reflected by a mirror, and the Cerenkov ring is detected by an array of 1934 photo-�A particle emits Cerenkov radiation in a medium if the ratio of its velocity over the speed of light in the
medium is greater than 1.
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2.6. THE PARTICLE IDENTIFICATION SYSTEM

multipliers per detector half. As shown in Fig. 2.7 the two radiators have a different

momentum window in which they give a good separation between pions, kaons and

protons: momenta lower than approximately 10 GeV are below threshold for Cerenkov

radiation with a gas radiator, while in this range the aerogel has its greatest discrimi-

nating power. At higher momenta the curves for aerogel saturate and it is not possible

anymore to distinguish among hadrons based on aerogel information, and the gas is used

instead. In the analysis for the determination of the structure function g1 no information

is used from the RICH, as only a good discrimination is needed between hadrons and

leptons. It is not important to identify the kind of hadron.

2.6.2 The transition radiation detector

The Transition Radiation Detector (TRD) (see Fig. 2.8) is a particle identification detector

used for the separation of electrons from hadrons. When a relativistic particle passes

through the interface between two dielectric media with dielectric constants �1 and �2,

it emits radiation in the forward direction at an angle ' proportional to 1=, where 
is the Lorentz factor E=m, and E and m being the energy and mass of the particle. The

transition radiation (TR) for ultra-relativistic particles is in the X-ray region (several keV),

useful for particle physics applications. In the passage from vacuum to a medium with

electron density ne, the probability of emission of a transition radiation photon in the
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Figure 2.8: Schematic picture of the six TRD modules. Electrons and pions induce dif-
ferent signals in the detector since electrons emit TR photons, detected on top of the
ionization dE=dx.
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ultra-relativistic regime is given by WTR = 8��2ne3me (2.7)

where � is the fine structure constant andme the electron mass. The linear dependence ofWTR on  enables a separation of highly relativistic particles (� ' 1) in a way that would

require a much longer Cerenkov detector for the same separation power. For example

a 5 GeV electron has a  = 10000 while for a pion  = 35, so that the probability that

the electron emits a TR photon will be 300 times larger than for the pion. Fig. 2.9 shows

how the measurement of the TR improves the separation of electrons from pions. The

dependence of WTR on the square of � = 1=137 implies that in order to achieve a con-

siderable probability for the emission of a TR photon, many radiator layers are needed,

and the dependence on ne implies the use of a material with high electron density. The

radiator also needs to be highly transparent to X rays, in order to avoid self-absorption.

A polypropylene fiber radiator satisfies all requirements, while the last problem is also

solved by building a sandwich structure of radiators and X-ray detectors, as shown in

Fig. 2.8. The radiator is a loosely packed array of polypropylene fibers with a diameter

of 17-20 �m, arranged in roughly 300 2-dimensional layers, with a total thickness of 6.35

cm.

The detector consists of 12 modules, 6 above and 6 below the beam pipe. The outer
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Figure 2.9: Response of a single TRD module. The energy dE=dx deposited in the TRD
due to ionization is not able to provide a clear separation between pions and electrons.
When the transition radiation is included, the electron peak moves to higher energies
and the separation improves.
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dimensions of the two halves are 401 x 112 x 61 cm3. Each module is made of a radiator

and a wire chamber, separated by a flush-gap where CO2 circulates in order to avoid

the diffusion of oxygen and nitrogen into the chambers, thus protecting them from the

ambient atmosphere. The gas in the wire chambers needs to have high atomic number,

in order to achieve best X-ray absorption, thus the use of a mix of 90% Xenon and 10%

methane, the latter acting as a quencher to avoid the creation of electron avalanches in

the chamber.

The TRD detector reaches a hadron rejection factor (defined as the ratio of the total num-

ber of hadrons to the number of hadrons misidentified as leptons, for a given energy cut)

of 100 for 90% lepton efficiency (the number of leptons above the cut over the total num-

ber of leptons). The discrimination can be improved by a factor three with a probability

analysis ([15]), whose concepts will be outlined in section 2.6.5.

2.6.3 The preshower detector

The preshower detector H2 sits in the back region (see Fig. 2.1) and it has the two func-

tions of being both in the trigger and part of the particle identification system. The scintil-

lators are identical to the hodoscope H1; both consist of 42 vertical 9.3 cm wide scintillator

paddles overlapping each other by 1.5 mm to avoid acceptance gaps. H2 incorporates 1.1

cm of lead directly in front of the scintillators. Hadrons are minimum ionizing so they

produce a very low signal in the detector, while leptons produce electromagnetic show-

ers, triggered by the high Z of the lead, thus giving rise to a much higher signal. Hadrons

deposit about 2 MeV in the detector, while the electron energy distribution varies roughly

like ln E. Fig. 2.11 includes a histogram with the response of the preshower.

2.6.4 The electromagnetic calorimeter

The calorimeter is part of both the trigger and the particle identification system. It con-

sists of two identical 42x10 arrays of 9x9x50 cm3 blocks of radiation resistant F101 lead-

glass located above and below the beam-pipe (see Fig. 2.10), each connected to a photo-

multiplier. As with the luminosity monitor, each half is moved away from the beam-pipe

50 cm vertically at beam injection and dump to avoid radiation damage. Leptons tend to

lose all their energy by creating electromagnetic showers which start in the preshower,
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Figure 2.10: Preshower H2 and calorimeter. Particles first encounter 1.1 cm of lead, which
favors the creation of electromagnetic showers, giving rise to a high signal in H2 and the
calorimeter if the particle was a lepton, thus providing a discrimination with hadrons.

and are almost fully contained within the preshower and the calorimeter, since the to-

tal length of the calorimeter blocks is 18 radiation lengths. Hadrons instead tend to lose

their energy by hadron interactions, processes that have a much higher characteristic

length, so that a hadronic shower will not be entirely contained in the calorimeter. This

proves to be a means of hadron-lepton separation. For hadrons the sum of the energies

deposited in the preshower and in the calorimeter divided by the momentum measured

by the tracking system will be much less than 1, while for leptons this ratio will be very

close to 1. Fig. 2.11 includes a histogram with the E=p calorimeter response and the cuts

used to separate leptons from hadrons. It also shows a tail with events having E=p > 1.

Such events could come from high energy leptons that lose energy by radiating a pho-

ton before entering the magnet and the measurement of their momentum; if the emitted

photon is detected in the same calorimeter cluster, this would give a measured energy

greater than the momentum.

2.6.5 PID

From the response of the particle identification detectors it is possible to generate a quan-

tity PID (Particle IDentification), that is related to the probability of a particle to be a

hadron or a lepton. From the deflection of the particle in the magnet it is possible to cal-

culate its momentum p. In each PID detector the particle will leave some energy E. The

issue is then to find the probability P (l(h)jEp), givenE and p, that the particle is a lepton
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1996-1997 1998-2000
Leptons Hadrons Leptons Hadrons

CALO 0.92< E=p < 1.10 0.01< E=p < 0.80 0.92< E=p < 1.05 0.01< E=p < 0.50
PRE E > 0.025 GeV E < 0.004 GeV E > 0.03 GeV E < 0.003 GeV
TRD E >26 keV 0.1< E(keV)<14 E > 26 keV 0.1 < E(keV)<13

Table 2.1: Hard cuts used to identify leptons and hadrons.l or a hadron h.

Bayes theorem relates such a probability to the observable probabilities P (l(h)jp) that

a particle with momentum p is a lepton (hadron), and P (Ejl(h)p) that a lepton (hadron)

with momentum p deposits an energy E in the detector:P (l(h)jEp) = P (l(h)jp) P (Ejl(h)p)P (ljp)P (Ejlp) + P (hjp)P (Ejhp) : (2.8)

The probability distributions P (Ejlp) and P (Ejhp), called parent distributions, can be mea-

sured in a test beam facility by measuring the response of the detectors to a beam of pure

leptons or hadrons. Another way, commonly used in HERMES , is to place “hard” cuts

on the response of the other detectors, to be sure that the response of the detector un-

der consideration is generated by a certain type of particle. This way has the advantage

of taking into account possible aging effects of the detectors. The cuts have to be hard

enough to define a clean sample but also they need to have enough statistics, so the cut

values vary for each data production, being tighter only for the productions with more

data like 1998, 1999 and 2000, and less tight for 1996 and 1997, as is shown in Table 2.1.

Fig. 2.11 shows the response of these detectors and the cuts identifying leptons and

hadrons in 1996-1997. The plots are obtained using data from 1996. A track is included if

it has a good data quality, it is Trigger 21 (the DIS trigger in HERMES , see next section),

and its vertex originates from the target region. From the parent distributions one can

create the quantity PID. The flux ratio (ratio of hadrons over leptons) and the PID for

each detector D are defined as:� = �h�l = P (hjp)P (ljp) PIDD = log10 PD(Ejlp)PD(Ejhp) ; (2.9)

where PD are the conditional probabilities for a detector D.

When one considers the response of more detectors then one gets a better discrimina-

tion between hadrons and leptons, so we can define as PID the combined PID for more
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Figure 2.11: The responses of the Particle Identification Detectors. Superposed are the
cuts identifying hadrons (dashed lines) and leptons (solid lines). The plots refer to the
1996 data. Since the Cerenkov detector was upgraded to a RICH, it is not included in the
PID anymore. The plots are from Ref. [16].

than one detector: PID0 = log10YD PD(Ejlp)PD(Ejhp) =XD PIDD : (2.10)

The most common PID combinations used in HERMES arePID2 = PIDCALO + PIDPREPID3 = PIDCALO + PIDPRE + PIDCERPID5 = PIDTRD = 6Xi=1 PIDTRDi ; (2.11)

where the last sum runs over the 6 TRD modules per detector half.

After the 1997 production, the Cerenkov was upgraded to a RICH detector, and the

information coming from it no longer enters into the PID, as now it is mainly used for

hadron identification. So for the data used in this thesis PID2=PID3.

The quantity PID = log10 P (ljEp)P (hjEp) (2.12)
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Figure 2.12: The distribution of PID values when fluxes are taken into account (dotted
line) compared to the one without fluxes (solid line) (from Ref. [17]). Depending on the
cut value, the inclusion of fluxes is more or less important.

is clearly positive if the probability of being a lepton is higher than that of being a hadron,

and vice-versa for a hadron. In terms of flux ratio � and PID, and using Eq. (2.8) it can

be re-written as: PID = log10 P (Ejlp)P (Ejhp) � P (ljp)P (hjp) = PID0 � log10 � : (2.13)

In many HERMES analyses the flux ratios are often neglected, and this is clearly wrong,

especially if one places a cut very close to zero, as is shown in Fig. 2.12.

The fluxes of hadrons and leptons depend both on the momentum p and on the polar

angle �, since the cross section depends on these quantities. They are not as straightfor-

ward to calculate as the PID since they require the particle identification as an input, so

they are calculated using an iterative procedure giving an initial guess for the fluxes, and

continuing until convergence, as is explained in section 3.2.2.

2.7 Trigger

In HERMES a number of triggers are used to extract information useful not only to

physics but also for diagnostics on the functioning of the detector.

As a first level screening, many types of triggers are used to record data likely pro-

duced by different physical processes. Trigger 21 is the trigger defining a potential deep
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inelastic scattering event.

The trigger requirements that a track has to satisfy involve signals in the top or bottom

H0, H1, H2 scintillators and the calorimeter.

The trigger requirements are briefly summarized.� The requirement of a signal in the H0 and H1 detectors prevents showers origi-

nating from photons and resulting in high signals in H2 and the calorimeter from

being accepted as DIS events.� The signal in the preshower is required to be above the minimum ionizing level, in

order to avoid background from hadronic showers.� The calorimeter must have an energy deposition above 1.4 GeV. Since hadrons are

less likely to shower in the calorimeter, the combination of a signal in the preshower

H2 and the calorimeter has a high probability of coming from an electromagnetic

shower rather than a hadronic one. The threshold of the calorimeter was set to 3.5

GeV until 1996, equivalent to an event selection with cut on y = (E�E0)=E < 0:87,

where E is the beam energy and E0 is the energy of the scattered track.

From 1996 the threshold was lowered to 1.4 GeV, so that the cut on y was extended

to y < 0:91.� The signal has to satisfy time ordering conditions: it is compared to the HERA

clock, which is synchronized to the beam bunch signal, and it is accepted only if it

is within some time window corresponding to the passage of the electron beam.

2.7.1 Trigger Efficiencies

Trigger efficiencies (TE’s) had never been taken into account in any HERMES analysis

before the studies shown in this thesis. It was always believed that the main source of

inefficiency was from the tracking system, and that the trigger was highly efficient. It

will be shown that this is not true, as the efficiency of Trigger 21 was as low as 90% from

1998 to 2000. Here only studies regarding 1998 and 2000 will be shown. Results on 1999

and high density unpolarised data are in Ref.[18].
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Figure 2.13: The detectors involved in the trigger study.

The detector that contributed the most to the inefficiency was H0 (see Fig. 2.13).

Unfortunately this was due to many possible causes, not all well understood. One pos-

sible reason was a small misalignment found in the bottom H0. During the summer

1999 shutdown this problem was discovered and fixed, but the low efficiencies and the

top-bottom difference in trigger efficiencies remained, disappearing only after various

voltage increases, showing that the most probable cause for the inefficiencies was a volt-

age problem. In the 2000 production the H0 efficiency was again low, but this time the

top efficiency was worse than the bottom one. The source of low efficiency is probably

radiation damage, as it will be explained below.

2.7.2 Definitions

The efficiencies of H0, H1, H2, CALO must be determined in order to get the Trigger 21

efficiency. The main reason for this study was to find the upper y-cut to be used for the

low-x and low-Q2 g1 analysis. After these studies it was found that the H0 efficiency

was very low compared to previous years, so it was important to find the cause of this

behavior. Trigger 18, 19, 20, 28 and 21 are defined as:

Tr18 = (H1 �H2 � (CALO > 1:4 GeV))top + ()bot

Tr19 = (H0 �H2 � (CALO > 1:4 GeV))top + ()bot

Tr20 = (H0 �H1 � (CALO > 1:4 GeV))top + ()bot
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Tr28 = (H0 �H1 �H2 � BC)top � ()bot

Tr21 = (H0 �H1 �H2 � (CALO > 1:4 GeV))top + ()bot : (2.14)

The efficiency of each trigger detector and Trigger 21 are"(H0) = N18&21N18 (2.15)"(H1) = N19&21N19 (2.16)"(H2) = N20&21N20 (2.17)"(CALO) = N28&21N28 (2.18)"(Tr21) = "(H0) � "(H1) � "(H2) � "(CALO) ; (2.19)

where Ni&21 is the number of events common to Trigger i and 21, while Ni is the number

of events that fired Trigger i. Clearly Ni&21 < Ni, so that their ratio is always less than

or equal to one. A track satisfying all geometric and PID cuts and firing Trigger i should

also fire Trigger 21, which contains a signal from the same detectors except one, so the

efficiency of this one detector is determined by the number of times that the detector did

not give a signal when it should have done so.

In this study an event was selected if the track with highest momentum in the event

is of the same charge as the beam, if it satisfies the geometric cuts that ensure that all

the track was contained within the acceptance of the HERMES detector and originated

in the target and a PID5>4 cut. Such a high PID cut, together with information from

the RICH, were necessary to make sure that the particle selected was an electron, since

no information could be used from the preshower and calorimeter, as they enter in the

study, and using information from them could bias the result. The cut applied to the

RICH was log10�g1RICH.rprob1

g1RICHrprob3

� > 0 ; (2.20)

to take into account that the electron could be a misidentified pion. The quantity in Eq.

(2.20) is the logarithm of the ratio of probabilities for the RICH signal to come from an

electron over the probability for the particle to be a pion. Only if Prob(e)>Prob(�) the

logarithm is greater than zero.

26



2.7. TRIGGER

2.7.3 Calorimeter efficiency

No specific trigger can be used to directly derive the calorimeter efficiency. Instead, Trig-

ger 28 can be used, since it is the closest to a Trigger 21 without CALO:

Tr28 = ( H0 � H1 � H2 � BC )top � ( )bot : (2.21)

The BC’s are known to be very efficient, so that they can be neglected in Eq. (2.21). The

presence of a logical AND instead of a logical OR in Eq. (2.21) requires that events with at

least 2 tracks have to be selected, of which one has to be in the top and one in the bottom

half of the detector. This fact is the cause for the (statistical) error bars being large for the

calorimeter efficiencies.

2.7.4 Error calculation

The error on the trigger efficiencies is the error on quantities of the form:" = NANB : (2.22)

The error formula used in this report is ([19])Æ" =s(NA + 1)(NB �NA + 1)(NB + 2)2(NB + 3) : (2.23)

The origin of this formula is not straightforward. It takes into account the fact that there

are bins in which NA and NB are very small numbers, so that the usual error formulas

may not be valid, since they usually apply in the limit of large numbers. In the limit of

large numbers it takes the usual form of the binomial error:Æ" =s(1� ") "NB : (2.24)

The errors will be plotted as asymmetric since the efficiency cannot be larger than 1.

2.7.5 Trigger efficiencies for 1998 data set

Plots of the efficiencies of the H0, H1, H2 and calorimeter detectors are shown in Fig.

2.14, as a function of �x and �y. These are the angles that the projection of the track on the
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2.7. TRIGGERx; y plane makes with the x and y axis:tan �x = tan � os'tan �y = tan � sin' : (2.25)

The last two variables were chosen instead of the cartesian position variables x and y
because they reflect the acceptance of the HERMES detector, simplifying the comparison

among plots of different detectors. They also do not require the knowledge of the exact

position of the detectors on the z axis. The figures show the upper and lower detectors,

and the beam line is to be imagined to be in the center, in the zero position of the (�x, �y)

axis. The plots are done taking into account only events with one track, as the efficiency

for the detection of more than 1 track is higher and depends on the efficiencies for 1 track

in a non trivial way. For diagnosis purposes 1-track events were singled out and the

efficiencies studied. The efficiencies of the H1, H2, Calo and the top H0 detector were all

very close to 1, while the H0 bottom detector has a lower efficiency of the order or 90%,

almost independent of the position. At high angles there are not enough statistics, so that

the low values of the efficiencies in green actually have large errors.

The trigger efficiencies have to be taken into account in any measurement of absolute

cross sections. The cross section � depends on the ratio between the measured number

of events N and the efficiency: � = N"L ; (2.26)

where L is the luminosity. Given the efficiency ", this is equivalent to considering the

corrected number of events common to Trigger 18 and 21:Ncorr18&21 = Nmeas18&21"(H0) (2.27)

in the cross section expression, together with " = 1. By correcting N18&21 in each bin of

momentum, track multiplicity, time, etc., the efficiency in each of these bins should be 1,

since: "corr(H0) = Ncorr18&21N18 = 1 : (2.28)

This correction has been done in two different ways for the years 1998 and 2000.

In the 1998 production "(H0) was very low only in the bottom detector, probably

because of an incorrect voltage setting. The bad voltage gave a strong dependence of
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Figure 2.14: Color-coded plots of the efficiency of Trigger 18 (H0,top left), Trigger 19 (H1,
top right), Trigger 20 (H2, bottom left) for 1-track events and Trigger 28 (Calorimeter,
bottom right) for 2-track events, as a function of �x and �y. The efficiency for the H0
detector is low for the bottom detector, while all the other detectors show very high
efficiencies.

the efficiencies on the particle’s momentum, as is shown in the top plots of Fig. 2.15.

The bottom plots in Fig. 2.15 show instead plots of the efficiency versus time (beam

fill number) for one track events (left) and any number of tracks (right). Even though

the efficiencies are not constant in time, it is not possible to separate them into different
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Figure 2.15: Trigger 18 efficiency (H0 detector) for 1 track events (left) and total (any
number of tracks) efficiency (right), for the 1998 data set, as a function of momentum in
the top plots, and of beam fill number in the bottom plots. The total efficiency is higher
than the efficiency for 1 track events since events with multiple tracks have a higher
probability of being detected, thus increasing the efficiency.

periods, mostly because there is not enough statistics. Since the only strong dependencies

are the ones on momentum and on the number of tracks, the efficiencies for 1, 2 and 3 or

more tracks were considered, and then fitted to a polynomial function of the momentum.

The functions are shown in Table 2.2.

The effect of the correction on the efficiencies is shown in Fig. 2.16, where the cor-

rected total efficiencies are plotted as a function of momentum and time. The figure
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2.7. TRIGGER# of tracks Correction function
1 0:97� 0:035p+ 0:0059p2 � 0:40� 10�3p3 + 0:11� 10�4p4 � 0:115� 10�6p5
2 0:966 + 0:00324p� 0:266� 10�3p2

3 or more 1:0003� 0:0042p+ 0:64� 10�3p2 � 0:28� 10�4p3
Table 2.2: Correction functions for Trigger 18 efficiency as a function of the particle’s
momentum, where p is in GeV. The correction is valid for the bottom H0 detector, in the
1998 data set.

shows that the corrections are valid within ' 2%.

2.7.6 Trigger efficiencies for 2000 data set

Fig. 2.17 shows the efficiencies for the H0, H1, H2 and Calorimeter detectors, as a func-

tion of �x and �y for the year 2000.

The efficiencies of the four detectors show a similar circular shape that can be easily

explained as radiation damage, since the beam-pipe is in the origin of the �x,�y axis. The

plots are made considering only 1-track events. The above mentioned figures also show

that only the H0 detector has a very low efficiency, ranging from 94% in the top-center

to less than 99% everywhere else. The other detectors show some damage and have
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Figure 2.16: Final corrected Trigger 18 efficiencies as a function of time (left) and momen-
tum (right), for 1998 data. The plots are done for the total efficiencies, i.e. for any number
of tracks. Only the bottom efficiencies have been corrected.
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Figure 2.17: Color-coded plots of the efficiency of Trigger 18 (H0,top left), Trigger 19
(H1, top right) Trigger 20 (H2, bottom left) for 1-track event and Trigger 28 (Calorimeter,
bottom right) for 2-track events, as a function of �x and �y, for 2000 data. They show
radiation damage, clear from the circular shape of the efficiencies.

efficiencies above 99% everywhere such that further studies are not considered necessary.

Some small values are shown at the borders of the detectors, but they are due to small

statistics: in those regions the efficiencies have very large error bars (not shown on the

plots). In the following we will then concentrate only on the H0 detector, since it was the
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major source of bad efficiency in Trigger 21.

The time dependence of the H0 efficiency is shown in Fig. 2.18 for 1-track events in

the left plot and for any number of tracks in the right plot. As explained before the total

efficiency is larger than the efficiency for 1 track only, since the probability of detection

increases with the number of tracks. Fig. 2.18 shows that throughout the 2000 data set

the efficiency in the bottom detector was higher than the one in the top detector, and two

periods can be isolated, separated by fill 97. At that time there was a high voltage change

in the H0 detector, that was able to bring the efficiencies up from about 94% to 97% in

the top and from 97.5% to 98.5% in the bottom. Also a momentum dependence is visible

in the bottom plots of Fig. 2.18, where the efficiencies in the first and last period, and

for each period in top and bottom are plotted. The voltage change was not enough to re-

move the momentum dependence of the efficiency, especially since Fig. 2.17 shows some

serious radiation damage. A new H0 detector was built and installed as a consequence

of these studies. To get a proper efficiency estimation one then needs to separate the effi-

ciency into bins of all these quantities. Even for the year 2000 and its large statistics this

is not feasible. An alternate method was used: for each of the two periods (before and

after fill 97), the efficiencies were calculated in bins of 1, 2, and 3-or-more track events

and in �x; �y bins. In a second step, each event was re-weighted by the efficiencies as

shown in Eq. (2.27), so that the only dependence left was on momentum, shown in Fig.

2.19. The efficiency in terms of track’s momentum seems to be independent of the ge-

ometry, since the major effect of the correction was to push the data points up, so that

they average 1, but the functional shape is almost unchanged. In a third step, the events

were re-weighted by the momentum efficiency, for 1,2 and 3-or-more tracks, for each of

the two periods. Fig. 2.20 shows the time dependence of the fully corrected efficiencies.

The correction is good to within �1%. Due to the complexity of the correction, it is not

reported here, but it is available for use on a DESY account in the form of a subroutine.

2.7.7 Conclusion

The trigger efficiencies have been studied for the two data productions 1998 and 2000,

that will be used in the analysis of gd1.

In both years the main source of inefficiency was the H0 detector. In 1998 the reason
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Figure 2.18: Trigger 18 efficiency (H0 detector) versus beam fill number for 1 track events
(top-left) and total efficiency (top-right). The bottom plots show the momentum depen-
dency for the two periods separated by fill 97.

for the inefficiency was likely an incorrect voltage setting, while in 2000 it was radiation

damage. The H0 detector was replaced by a new one after 2000.

Corrections were obtained that should be applied to any cross section measurement

to take into account the trigger efficiencies.

The effect on the gd1 extraction will be considered in chapter 3.
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Figure 2.19: After being corrected for the geometric �x, �y dependence, the efficiency still
shows a momentum dependence that has to be corrected in a second step, for the first
period (left plot) and the second (right plot).
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Figure 2.20: Time dependence of trigger 18 after the application of full correction. The
correction brings the efficiencies to 1 within 1% for both top and bottom.
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Chapter 3

The structure function gd1
3.1 Definition of structure functions

The cross section for the deep inelastic scattering (DIS) process can be written as the tensor

product of a leptonic tensor L�� (describing the leptonic vertex in the Feynman diagram)

with a hadronic tensor W�� (describing the hadronic vertex), as shown in Fig. 3.1. In

the following, the initial and final leptonic four-momentum will be indicated by k and k0,
the initial nucleon’s four-momentum by P , the virtual photon’s four-momentum squared

will be indicated by q2, with Q2 = �q2. Since the leptons are point-like particles, L�� can

be expressed precisely in QED ([1]):L�� = Tr [(1 + 5=s)(=k +ml)�(=k0 +ml)� ℄ : (3.1)

θ
e

N

e’

γ*
µνL

µνW

��
��
��
��k

k’

q

P

Figure 3.1: Schematic picture of Deep Inelastic Scattering for one photon exchange.
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

In the last expression ml indicates the leptonic mass, and s the leptonic polarization.

The notation =x stands for �x�, � (�=1,...,4) being the Dirac matrices. The matrix 5 is

given by 5 = i1234. L�� consists of a part independent of the lepton polarization s�
(symmetric, labeled with S) and a part that depends on it, (anti-symmetric, labeled withA): L�� = L(S)�� + L(A)�� ; (3.2)

where L(S)�� = 2(k�k0� + k�k0� � g��(k � k0 �m2l ))L(A)�� = �2i ml "���� (k � k0)�s� ; (3.3)

where "���� is the completely anti-symmetric four dimensional tensor. From the last

equation it appears that all polarization effects are suppressed at high energy by a factorml (which is small). This is true in the case of transverse polarization, while in the case

of longitudinal polarization one has mls� ! k� , and thus there is no suppression. This

shows why it is important to have a longitudinal polarization in order to measure effects

coming from the polarization.

Because of the lack of knowledge of the nucleon’s internal structure, the hadronic ten-

sor, instead, has to be parameterized through the introduction of (at least) four� structure

functions, two of which appear when the nucleon is unpolarized, and two more when it

is polarized ([20]): W�� =W (S)�� +W (A)�� ; (3.4)

where:W (S)�� = 2��g�� + q�q�q2 �F1(x;Q2) + 2�P� � P � qq2 q���P� � P � qq2 q�� F2(x;Q2)�M (3.5)

and W (A)�� = i 2MP � q"����q� �S�g1(x;Q2) +�S� � S � qP � qP �� g2(x;Q2)� ; (3.6)

where M is the nucleon’s mass, and S its polarization.

The structure functions depend on two independent variables, taken as x andQ2. The

dependence on Q2 can be understood by considering that the structure that the photon�This is true under the assumption that Q2 << M2Z , so that weak interactions may be neglected. For
higher energies three more polarized structure functions g3, g4, g5 appear in the expression for W�� .
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

probes inside the nucleon depends on its energy. The other variable, the Bjorken variablex is defined as x = Q2=2P �q, and is a measure of the inelasticity of the process. For elastic

scattering the invariant mass W of the �p system must be equal to M , soW 2 = (P + q)2 =M2 �Q2 + 2P � q =M2 ! x = 1 elastic scattering : (3.7)

For inelastic scattering instead it must be W > M , which implies 0 < x < 1. The quan-

tity x is identified with the fraction of nucleon’s momentum carried by the parton that

interacts with the virtual photon.

3.1.1 QPM interpretation of the structure functions

It is very convenient to have a technique that allows one to extract the structure functions

from the hadronic tensor. This can be easily done by defining four projectors P ��i that,

when applied to W�� , give the four structure functions.

The projectors for the unpolarized case are ([21]):P ��1 = 14 �1aP �P � � g��� ! F1 = P ��1 W��P ��2 = 3P � q4a �1aP �P � � 13g��� ! F2 = P ��2 W�� ; (3.8)

where a =M2 + (P � q)=2x.

In the same way, we can define, for the polarized case ([21]):P ��3 = 1b ��(q � S)� (P � q)2M2(q � S)� q� + 2(P � q)xS��P�"���� ! g1 = P ��3 W�� (3.9)P ��4 = (P � q)2bM2(q � S) [(q � S)S� + q�℄P�"���� ! g2 = P ��4 W�� ; (3.10)

with b = �4M h (P �q)M2 + 2(P � q)x� (q � S)2i.
In the simplest version of the Quark Parton Model (QPM) the nucleon is considered

to be made of collinear, free constituents, each carrying a fraction x0 of the nucleon four-

momentum. Lepton-nucleon DIS is then described as the incoherent sum of all lepton-

constituent quark interactions and the hadronic tensor W�� is given in terms of the ele-

mentary quark tensor w�� :W�� =Xq;s e2q 12P � q Z 10 dx0x0 Æ(x0 � x)nq(x0; s;S)w��(x0; q; s) ; (3.11)
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

where the sum runs over quarks and antiquarks, nq(x0; s;S) is the number density of

quarks q with charge eq, momentum fraction x0 and spin s, inside the nucleon with spinS and momentum P . The hadronic tensor w�� is the same as the leptonic tensor L��
in Eq. (3.3) (since quarks are also charged, spin 1/2 particles), with the replacementsk� ! xP �, k0� ! xP � + q�, and a sum over the final spin s is performed. With these

substitutions one gets the symmetric and anti-symmetric quark tensors:wS�� = 2[2x2P�P� + xP�q� + xq�P� � x(P � q)g�� ℄wA�� = 2imq"����s�q� ; (3.12)

and the quark mass, for consistency, must be taken as mq = xM , before and after the in-

teraction with the virtual photon. We can now introduce the unpolarized quark number

density q(x) and the polarized one �q(x; S) asq(x) = Xs nq(x; s;S)�q(x) = Xs nq(x; s;S)�Xs nq(x;�s;S) : (3.13)

By applying the projection operators P ��i to W�� one obtains the well known Naive Par-

ton Model predictions for the structure functions

F1(x) = 12Xq e2qq(x)
F2(x) = xXq e2qq(x)
g1(x) = 12Xq e2q�q(x; S)
g2(x) = 0 : (3.14)

3.1.2 Asymmetries

In the cross section � ' L��W �� the cross terms L(S)�� W ��(A) and L(A)�� W ��(S) give no

contribution. The cross section will then be of the form:L��W �� = L(S)�� W ��(S) + L(A)�� W ��(A) : (3.15)
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

k
k’

S
α

φ

Figure 3.2: Kinematic plane.

The last equation shows why it is natural to create differences in cross sections with

nucleons of opposite polarizations in order to extract the polarized structure functions g1
and g2: in this way, the contribution of the unpolarized structure functions cancels out.

The most general cross section difference relevant for polarized deep inelastic fixed

target lN scattering is ([20]):�3[�(�) � �(�+ �)℄�x�y�� = 8�2Q2 �os� ��1� y2 � y224 �
g1(x;Q2)� y22 g2(x;Q2)�+� sin� os� r1� y � y224 hy2g1(x;Q2) + g2(x;Q2)i# : (3.16)

This formula contains only information from the anti-symmetric part of the tensorW�� . The angle �, as shown in Fig. 3.2, is the angle between the lepton beam momentum

vector k and the nucleon-target polarization vector S; � is the angle between the k-S
plane and the k-k0 lepton scattering plane,  = 2Mx=pQ2 and y = (P � q)=(P � k) is

the fraction of energy transferred in the reaction. The quantities x, y and Q2 are related

to each other by the expression Q2 = sxy, where s is the centre of mass energy in the

lepton-nucleon reaction. Effects associated with g2 are suppressed by a factor 2M=pQ2
with respect to the leading terms.

More convenient than the difference of cross sections are asymmetries (with an asym-

metric integration over �) like: A(�) = �(�) � �(�+ �)�(�) + �(�+ �) ; (3.17)

as for example the longitudinal asymmetryAk = �(! � �)!�(! + �)! ; (3.18)
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obtained for � = 0 from the cross sections when the polarization of target ((, )) and

beam (!) are parallel (
)!) or anti-parallel (

(!), or the transverse asymmetry A? obtained

for � = �=2. Asymmetries are convenient since, as already discussed in the last chapter

on the trigger efficiencies, many detector effects simply cancel in the cross section ratio.

The physically interesting quantities are the virtual photon nucleon asymmetries:A1 = �1=2 � �3=2�1=2 + �3=2A2 = 2�TL�1=2 + �3=2 ; (3.19)

where �1=2 and �3=2 are the virtual photo-absorption cross sections when the projection

of the total angular momentum of the photon-nucleon system along the incident lepton

direction is 1/2 and 3/2. The term �TL arises from the interference between transverse

and longitudinal scattering amplitudes. A1 and A2 can be related via the optical theorem

to Ak and A?, or, equivalently, to the structure functions, by means of the following

relations: Ak = D(A1 + �A2)A? = d(A2 � �A1) ; (3.20)

with A1 = g1 � 2g2
F1A2 = (g1 + g2)
F1 : (3.21)

The kinematic factors D, d, �, � are defined as:D = y(y � 2)y2 + 2(1� y)(1 +R)� = 2(1 � y)2� yd = Dr 2"1 + "� = �(1 + ")2" ; (3.22)
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3.1. DEFINITION OF STRUCTURE FUNCTIONS

with R being the ratio of longitudinal to transverse virtual photon-quark cross sections,

and " being the degree of transverse polarization of the virtual photon:" = 1� y1� y + y22 : (3.23)

From the measured asymmetry Ajj one can get the structure function g1 by means of

the relation:
g1
F1 = 11 + 2 �AjjD + ( � �)A2� : (3.24)

3.1.3 Evaluation of g1 on nuclear targets

Let us consider DIS on nuclear targets. The assumption of incoherent scattering from

the constituent nucleons will be used, which consists in neglecting nuclear effects such

as shadowing and Fermi motion ([22]), an approximation only valid at high Q2. In this

hypothesis the unpolarized scattering cross section on the nuclear target is equivalent to

the sum of cross sections on the neutron and on the proton.

In the following the assumption of 100% beam polarization will be used for simplicity.

The differential cross section asymmetry on a nuclear target A is defined as:AAjj = d�(!A � d�)!Ad�(!A + d�)!A : (3.25)

Under the hypothesis of incoherent scattering on a nucleus with Z protons and N neu-

trons, the differential cross sections d�(!()!)A are related to the unpolarized ones on the

proton and the neutron by the relation:d�(!()!)A = Zd�p(1� PpApjj) +Nd�n(1� PnAnjj) (3.26)

where Ap;nk are the nucleon longitudinal asymmetries, and Pp;n are the longitudinal po-

larizations of the nucleons. The last expression recovers the formula for unpolarized

scattering for Pp = Pn = 0. It follows that the longitudinal asymmetry originating from

the nucleus A is: AAk = Zd�pPpApk +Nd�nPnAnkZd�p +Nd�n= fpPpApk + fnPnAnk ; (3.27)
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with fp = Zd�pZd�p +Nd�n ; fn = Nd�nZd�p +Nd�n (3.28)

being the fractions of events originating from protons and neutrons respectively.

In the case of a deuterium target, i.e. with N = Z = 1, fp and fn can be written as:fp = Fp12Fd1 ; fn = Fn12Fd1 (3.29)

where we have introduced Fd1 as the deuterium structure function F1 per nucleon. The

appearance of F1 in Eq. (3.29) is due to the fact that (3.28) contains unpolarized cross

sections.

Because of the D-state admixture, one has:P dp = P dn = �1� 32!D� ; (3.30)

where !D=0.058 ([23]) is the D-state wave probability.

By inserting Eq. (3.30) and (3.29) into Eq. (3.27) one gets:AdjjFd1 = 12 �1� 32!D� (ApjjFp1 +AnjjFn1 ) (3.31)

and consequently:

gd1 = 12 �1� 32!D��gp1 + gn1� : (3.32)

3.1.4 Extraction of gd1 from the measured asymmetry

The HERMES experiment is able to make measurements of the asymmetry Adjj. For the

final extraction of the structure function gd1 information is needed on Fd1 and Ad2 (see Eq.

(3.24)). Fits to available data are necessary to evaluate these functions at the values of x
and Q2 of the measured asymmetry.

F1 parameterization. The unpolarized structure function F1 can be written in terms of

the unpolarized structure function F2 and R, the ratio of longitudinal to transverse polar-

ized virtual photon cross sections on an unpolarized target, by means of the Callan-Gross

relation ([1]):

F1(x;Q2) = F2(x;Q2)2x[1 +R(x;Q2)℄ : (3.33)
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Commonly used parameterizations for Fd2 are the 8 ([24]) and 15 ([25]) parameter fits from

NMC.R parameterization. The R parameterization from Whitlow ([26] and [27]) is the aver-

age of Ra, Rb and R:Ra = 0:06723 �(x;Q2) + 0:46714(Q8 + 12:9757)1=4Rb = 0:0635 �(x;Q2) + 0:5747Q2 � 0:3534Q4 + 0:32R = 0:05992 �(x;Q2) + 0:50885�(Q2 �Q2thr)2 + 4:44396�1=2 ; (3.34)

with � = 1ln�Q2�2 � �1 + 12 Q2Q2 + 1 0:1252x2 + 0:1252 � ; (3.35)Q2thr = 5(1�x)5, and � = 0:2 GeV. This fit holds for all Q2 ranges of DIS experiments, but

should not be used for Q2 < 0:3 GeV2. So for Q2 values lower than 0.3 GeV2 the value ofR is kept fixed at its value for Q2 = 0:3 GeV2.

The structure function g2. The structure function g2 is null at zero-th order QCD, so

it does not have a direct QPM interpretation, since it cannot be written as a sum over

quark or gluon polarizations. It can be measured through the scattering of a transversely

polarized beam off longitudinally polarized targets, and it is in fact linked to the trans-

versely polarized quark distributions inside the nucleon. From Eq. (3.16) it follows thatA? (obtained for � = �=2) depends on the combination of structure functions g2 + y2g1,

where g1 is not negligible, so that g2 cannot be easily isolated. Since y = (E0 � E)=E,

where E is the beam energy and E0 the final lepton energy, this also shows that at fixedx and Q2, g2 can be isolated by varying the beam energy.

g2 can be written as:

g2(x;Q2) = gWW2 (x;Q2) + ~g2(x;Q2)
gWW2 (x;Q2) = �g1(x;Q2) + Z 1x g1(y;Q2)y dy~g2(x;Q2) = �Z 1x ��y �mMhT (y;Q2) + �(y;Q2)� dyy : (3.36)
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Figure 3.3: New results on xg2 (left) and the asymmetry A2 (right) from E155 ([28]) in
solid circles, for the proton and the deuteron, compared to pure Wandzura-Wilczek con-
tribution (solid line) and data from SMC ([29] in open circles, E143 ([30]) in open dia-
monds and older data from E155 ([31]) in open squares. Data on xg2 is compared to fits
from Stratmann ([32]) (dash-dot), Song ([33]) (dotted), Weigel and Gamberg ([34]) (short
dashes), and Wakamatsu ([35]) (long dashes).

The Wandzura-Wilczek term gWW2 is pure twist-2 (see section 4.1) and only depends on

g1, so it can be obtained from a measurement of g1 alone, while ~g2 depends on the twist-2

term coming from the transverse quark polarization hT , and on the twist-3 term coming

from quark-gluon interactions, � . The hT term is small for up and down quarks, being

dependent on the ratiom=M , thus the term � , even though being twist-3, is not negligible

compared to it.

Fig. 3.3 shows the results of a recent measurement of g2 by the E155 ([28]) experiment

in the range 0:02 � x � 0:8 and Q2 � 30 GeV2, for proton and deuteron.

A common assumption used in the extraction of g1 from the measured asymmetry

is to consider that both quantities � and A2 are small in the large energy limit: A2 is

bounded by the relation jA2j � pR (shown in the blue dashed lines in the plots), and R
is a small quantity. So it is quite accurate to write:Ak ' DA1 : (3.37)

By neglecting the g2 term in A1 (justified by measurements until recently), one obtains
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from Eq. (3.21):

g1(x;Q2) ' Ak(x;Q2)D(x;Q2) F1(x;Q2); (3.38)

which expresses g1 in terms of the measured asymmetry Ak, the measured unpolarized

structure function F1(x), and the known coefficient D. This is the approach taken by

many experiments in the past.

Because of the improved precision, it is now possible to include an A2 contribution in

the extraction of g1 from Eq. (3.24). After substituting the expression in Eq. (3.21) for A2
into Eq. (3.24), one gets an expression in terms of g1=F1, A2 and g2. Fig. 3.3 shows that

the data seem to be consistent with the inclusion of only the Wandzura-Wilczek term into

g2: AWW2 = (g1 + gWW2 )
F1 = 

F1 Z 1x g1(y)y dy= 
F1 Z 1x g1(y)

F1(y) F2(y)2y2(1 +R(y))dy ; (3.39)

such that

gd1 = 11 + 2 Fd22x(1 +R) AdjjD + ( � �)1 + 2 Z 1x g1(y)
F1(y) F2(y)2y2(1 +R(y))dy ; (3.40)

where the obvious x and Q2 dependencies have been omitted. The Wandzura-Wilczek

term can be calculated by using a parameterization for gd1=Fd1 from world data, and the

fits for Fd2 and R discussed earlier.

3.2 The measured asymmetry

The measurement of the deuterium structure function gd1 will be presented in the rest of

this chapter. As explained in the previous sections, the extraction of gd1 is the result of

the measurement of an asymmetry. It will be shown how the asymmetry is obtained in

terms of measured quantities for data taken in 1998 and 2000. Tests of the stability of the

results will follow, to conclude with the final results.

The unpolarized cross section �0 is related to the scattered lepton count rate N , to the

detector acceptance a(t; x;Q2), the total detection efficiency (tracking + trigger) "(t; x;Q2)
and the luminosity L(t) by the relation:N(x;Q2) = �0 Z dt a(t; x;Q2) "(t; x;Q2) L(t) ; (3.41)
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where t is time. When one considers instead a polarized cross section, the unpolarized

cross section may be expressed as �0 = (�)! + �(!)=2. The polarization will introduce an

additional term in the cross section which depends on the polarization of the beam PB
and the target PT :N)!(x;Q2) = �0 Z dt a(t; x;Q2) "(t; x;Q2) L)!(t) [1 + PB(t)PT (t)Ajj(x;Q2)℄N(!(x;Q2) = �0 Z dt a(t; x;Q2) "(t; x;Q2) L(!(t) [1� PB(t)PT (t)Ajj(x;Q2)℄ :

(3.42)

In section 3.1 it was shown that to obtain the asymmetry Ajj both target and beam need

to be polarized. Trivially the asymmetry is zero in the case that the cross section does not

depend on the polarization.

The asymmetry can be isolated to get:Ajj = N)! R dt a " L(! �N(! R dt a " L)!N)! R dt a " L(! PBPT +N(! R dt a " L)! PBPT ; (3.43)

where the dependencies on x,Q2 and t have been dropped for simplicity. Under the

assumption that the efficiencies and the acceptance do not depend on time, they can be

taken outside the integral, so that they cancel out. Finally one gets:Ajj = N)! L(! �N(! L)!N)! L(!p +N(! L)!p ; (3.44)

where L)! and L(! are the integrated luminosities, while L)!p and L(!p are the integrated

luminosities weighted by the product of target and beam polarization:L)! = Z dt L)!(t) L(! = Z dt L(!(t)L)!p = Z dt L)!(t) PB(t)PT (t) L(!p = Z dt L(!(t) PB(t)PT (t) : (3.45)

The asymmetry is obtained from the measured number of DIS events when the deuterium-

lepton relative spin is parallel (
)!) or anti-parallel (

(!):Adjj(x;Q2) = N(!
dis

(x;Q2) L)! �N)!
dis

(x;Q2) L(!N(!
dis

(x;Q2) L)!p +N)!
dis

(x;Q2) L(!p : (3.46)
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In the last equation the superscript d was introduced on the asymmetry to indicate that

we are referring to deuterium.

The measured number of DIS events is likely to contain some contamination either

from non-DIS leptons or from hadrons with the same charge as the beam (negative in

1998 and positive in 2000). The non-DIS leptons mostly come from charge symmetric

processes (cs), such as the decay of photo-produced �0’s into 2’s of which one or both

convert into e+e� pairs, or from high energy bremsstrahlung photons that create e+e�
pairs. Since they come from secondary processes, they are likely to have a lower momen-

tum, and thus be concentrated at high y. This kind of background is treated by supposing

that in each kinematic bin the amount of positive and negative leptons coming from such

processes is the same, so that the total number of DIS is obtained by subtracting the num-

ber of leptons with opposite charge from the number of DIS candidates:Adjj = (N(!
cand �N(!

cs) L)! � (N)!
cand

�N)!
cs) L(!(N(!

cand
�N(!

cs) L)!p + (N)!
cand

�N)!
cs) L(!p : (3.47)

The contamination coming from hadrons will be discussed in another section, as the

method to handle this contamination is not so straightforward. A systematic error for

the hadronic background is estimated.

The statistical error on the measured asymmetry comes from the error propagation

on the measured numbers of events:ÆAdjj=vuuut0� �Adjj�N(!
cand

1A2N(!
cand

+ �Adjj�N(!
cs

!2N(!
cs +0� �Adjj�N)!

cand

1A2N)!
cand

+ �Adjj�N)!
cs

!2N)!
cs= L(!L)!p + L)!L(!ph(N(!

cand
�N(!

cs) L(!p + (N)!
cand

�N)!
cs) L)!p i2�r(N(!

cand
�N(!

cs)2(N)!
cand

+N)!
cs)+(N(!

cand
+N(!

cs)(N)!
cand

�N)!
cs)2 :

(3.48)

3.2.1 Event selection

The data are organized in slow control and fast control. Slow control quantities do not need

to be evaluated on an event-by event basis, since by their nature they vary slowly. These
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quantities are then measured every ten seconds (every burst). Examples of slow-control

quantities are target and beam polarization and luminosities. Fast control are instead

quantities that need to be measured for every track, such as the momentum, the energy

released in the calorimeter, the angles, and so on. The data is then stored in a run file

containing approximately 7 minutes worth of data.

An analysis code was built to generate the event selection. It first accesses the data

file and reads the slow control tables, reading in the luminosities and the polarizations.

Later it accesses the tables related to the events in that burst. For each burst it looks

for the track with highest momentum in each event, which is the one with the highest

probability of being the scattered lepton. Such a track has to have a higher probability of

being a lepton (PID cut, see next section) than a hadron. Geometrical cuts are applied,

ensuring that the entire track is contained in the angular acceptance of the detector and

that the reconstructed scattering vertex zv along the z axis of Fig. 2.1 and the transverse

vertex tv in the direction transverse to the z axis are contained within the target cell:�y � 0:04rad (3.49)tv � 0:75m (3.50)�18cm � zv � 18cm : (3.51)

A last geometric requirement is that the track be completely inside the fiducial volume

of the calorimeter. Finally, kinematic cuts ensure that the track is consistent with being a

DIS event. These requirements are summarized in Table 3.1.

Quantity Description Cutx = � q22p � q = Q22M(E �E0) Momentum fraction carried 0:0021 < x < 0:85
by the struck partony = p � qp � k = E �E0E Energy fraction transferred 0:1 < y < 0:91

to the �Q2 = �(k � k0)2 = 4EE0 sin2��2� Four-momentum transfer Q2 > 0:1 GeV2W 2 =M2p + 2M(E �E0)�Q2 Invariant mass of W 2 > 3:24 GeV2
the �p system

Table 3.1: Definition of kinematic variables and the cuts used to define the DIS region.
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Figure 3.4: Kinematic x � y plane. The 49 bins are identified by numbers on the plot.
Each DIS event has its unique position on this plane, which is limited by kinematic cuts
(W 2 > 3:24 GeV2, Q2 > 0:1 GeV2 and 0:1 < y < 0:81) and by geometrical constraints
(0:04 < � < 0:22 rad).

As shown in a previous section, deep inelastic scattering has two independent quanti-

ties, that may be taken as x andQ2. A common choice is also x and y, and a 2-dimensional

plot of y versus x is shown in Fig. 3.4. Fig. 3.5 shows instead the kinematic x;Q2 plane,

and the average Q2 values in each bin, ranging from 0.2 to 7.5 GeV2.

All events satisfying the selected cuts will lie in an area within 0:0021 < x < 0:85 and0:1 < y < 0:91. The angular acceptance in � = 0:22 rad cuts the plane at the top, while
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Figure 3.5: The x � Q2 plane. The thick black dots represent the average Q2 values in
each bin.� = 0:04 rad cuts it at the bottom left. The cut W 2 > 3:24 GeV2 closes the kinematic

region on the bottom right. Fig. 3.4 also shows that some kinematic cuts are redundant.

The only necessary ones are the cut on the y variable, and the one on W 2.
The cut of y = 0:91 excludes the low momentum region (p < 2:5 GeV). The trigger

efficiencies have a dependence on momentum, and they reach a plateau only at momenta

of the order of 2.5 GeV ([18]). The low y cut is used to exclude a region where the mo-

mentum resolution is poor ([6]). The cut on W 2 is used to exclude the region of nucleon

resonances.

Due to a dependence of the measured asymmetry on y, where possible, more bins iny were introduced. A total of 49 bins were used in this analysis. In the plots presented in

this chapter lower, medium and higher y bins will be indicated respectively with y-bin=1,

y-bin=2 and y-bin=3. Because many tests have been made on the behavior of Adjj in each

bin, each bin number is clearly indicated in Fig. 3.4. The angles � = 0:04 rad, � = 0:07
rad, � = 0:1 rad and � = 0:22 rad roughly delimit the different y bins.
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3.2.2 PID scheme

The track must be efficiently identified as a lepton. Information from the preshower and

the calorimeter enter into PID3, while the TRD identification is contained in PID5. These

quantities have already been introduced in section 2.6.5 and provide the means for the

hadron-lepton separation. As was already pointed out, flux terms must be used. They

are often neglected in analyses, which implies an incorrect assumption of equal fluxes

of hadrons and leptons in the detector over the entire kinematic range. The requirement

used to identify a lepton is then:

PID = PID3 + PID5� log10 � > PIDcut : (3.52)

Fig. 3.6 schematically shows the PID distributions for hadrons and leptons. A PID cut

cannot be placed at too high a PID value since in this way too many leptons would be

excluded thus lowering the lepton efficiency, defined as the number of identified leptons

over the total number of leptons (horizontal shaded area in the figure). On the other

hand a low cut would increase the hadron contamination (vertically shaded area), which

is the number of hadrons above the cut over the total number of hadrons. Fig. 3.7 shows

the hadron contaminations and lepton efficiencies for the PID cut of 1, chosen as a good

compromise between the two.

The flux factors. The flux factors are calculated with an iterative procedure ([40]). It has

been shown in Eq. (2.13) that PID = PID0 � log10 � = 0 (3.53)

hadrons

PID cut

leptons

PID

Figure 3.6: Scheme of the PID distributions for leptons and hadrons. The PID cut must
be a compromise between high PID lepton efficiency and low hadron contamination.
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Figure 3.7: Left: efficiency of the PID cut equal to 1. Right: hadron contamination for the
same PID cut. For each x value, the lepton efficiencies are higher for the higher momenta
(lower y) bins and the hadron contamination is lower ([40]).

is the point where the probability of being a lepton is equal to the one of being a hadron.

The fluxes of hadrons and leptons are proportional to the number of particles of each

type, which in turn can be obtained from the PID distributions n(PID):�e / ne = Z 1
PIDcut

n(PID0)d(PID0)�h / nh = Z PIDcut�1 n(PID0)d(PID0) : (3.54)

Since the flux itself is written in terms of the PID, one obtains an equation that can be

solved iteratively. Eqs. (3.54) show that the flux terms depend also on the PID cut, so

that they can only be used in conjunction with the PID cut used to obtain them. Also,

they are specific to the trigger requirement used since the relative flux of hadrons and

leptons depend on the physical process involved. As with the DIS cross section, the

fluxes depend on two kinematic quantities, usually taken to be the momentum p and the

polar angle � of the track, so they have been calculated in 27 bins of momentum and 7 bins

of �. After the calculation they have been smoothed out to avoid fluctuations, which may

be significant in the region of high momentum and angle, because of the low quantity of

data. The log10 � term can assume values in general between -2 and +2, showing that the
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assumption of log10 � = 0 is absolutely wrong, since it neglects a range of four orders of

magnitude in the flux ratio.

3.3 Data

From the 1998 and 2000 data production 4413 and 22944 runs were selected with a good

data quality. Good data quality requirements include the absence of high voltage trips, a

well defined polarization, a measurement of beam polarization updated at most 5 min-

utes prior to the burst and no dead blocks in the calorimeter.

A study quantified the loss of luminosity due to performance deficiencies of the de-

tector in 1998 and 2000, a necessity to identify the major reasons why data was rejected,

and thus indicate needed improvements for future productions (see Table 3.2).

By requiring that the target gas be polarized deuterium, 26094 runs were selected for

2000. Only a small fraction of the total data available from 1998 (runs between 5398 to

10548) was analyzed, a total of 4611 deuterium runs. Runs prior to 5398 had bad data

quality, which prevented them from being used for any analysis.

The luminosity for each burst is calculated as the product of the luminosity rate times

the burst’s time length. As will be explained in the next section, there is more than one

quantity representing the luminosity, available in HERMES . The raw LumiRate is the

measurement of luminosity made by the luminosity detector, and its value smoothed in

time is the LumiFit. In any analysis the LumiFit has to be used. Some problems arise

from bursts that have been rejected because of an ill-defined luminosity measurement.

This problem is present for both luminosity quantities, being extreme in the LumiRate,

where spikes are present. The LumiFit shows instead very often negative unphysical

values when the measurement was meaningless. For such bursts the luminosity value

from the previous burst was used.

The final results on the total luminosity loss are listed in Table 3.2. The results are

separated for top and bottom detectors. The total and incremental values are shown for

both years.

The first four entries are related to target data quality. When the target was flip-

ping between polarization states and so had an ill-defined state, only 0.63% of the total
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2000 1998
TOTAL % INCR. % TOTAL % INCR. %

EXPLANATION TOP BOT. TOP BOT. TOP BOT. TOP BOT.
flipping 0.63 0.63 0.63 0.63 0.69 0.69 0.69 0.69PT unreasonable 2.25 2.25 2.25 2.25 1.08 1.08 1.08 1.08�R bad or unavailable 2.12 2.12 2.33 2.33 1.07 1.07 1.08 1.08
bad target data quality 3.83 3.83 4.40 4.40 1.69 1.69 1.73 1.73PB <30% or PB >80% 1.77 1.77 6.05 6.05 0.33 0.33 1.98 1.98PB meas>5 min ago 1.62 1.62 7.16 7.16 3.01 3.01 4.78 4.78IB <5 mA or IB > 50 mA 0.02 0.02 7.16 7.16 0.01 0.01 4.78 4.78L <5 Hz or L >60 Hz 1.90 1.90 8.74 8.74 0.01 0.01 4.78 4.78
bad CALO 2.22 4.24 10.40 12.33 0.35 0.46 5.09 5.20
bad PRE or LUMI 1.52 1.52 11.65 13.56 0.35 0.36 5.09 5.20
bad TRD 0.32 0.10 11.87 13.62 0.56 0.64 5.62 5.83
HV trip 0.17 0.11 11.95 13.68 0.60 0.79 6.12 6.52
bad RICH 0.93 0.84 12.77 14.41 0.62 0.61 6.67 7.06
logbook info 0.48 0.48 12.88 14.53 0.00 0.00 6.67 7.06
deadtime 0.19 0.19 12.98 14.63 0.60 0.60 7.05 7.44
burstlength 0.10 0.10 12.98 14.63 0.01 0.01 7.05 7.45
first burst of run 3.62 3.62 16.01 17.63 1.86 1.86 8.42 8.81
udst bad 0.58 0.58 16.30 17.92 0.63 0.63 8.85 9.23

Table 3.2: Luminosity loss in the years 1998 and 2000. A direct comparison between the
two years is not possible from the data in this table, since only part of the data is used
from the 1998 data production.

luminosity was lost. This means that with the high flipping rate, which is roughly 1

minute, only a small amount of data was lost. Unrealistic values of measured PT or �r
(see Eq. (2.6)) are in the second and third row. The target group also studies the target

performance and provides its own data quality information. The bad target data quality

amounts to a total of '4% in 2000 and '2% in 1998.

The second set of four entries in the table is related to beam information. Beam po-

larization values below 30% are discarded because they are too low, while values above

80% are unrealistically high. If the beam polarimeters did not update the polarization

measurement, the values are not reliable and discarded. Unrealistic values of current

and luminosity are also discarded, thus bringing the total of luminosity lost because of

bad beam quality to 3%.

Bad detector performance is in the third set of entries, which include bad calorime-

ter blocks (mostly in the first period of 2000), a non-functioning luminosity monitor,
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preshower and RICH, high voltage trips in tracking detectors or the TRD, for a total

of about 6% in 2000 and 2% in 1998. The functionality of these detectors is necessary for

the DIS analysis. The RICH is not essential in the g1 analysis, but since the luminosity

lost for bad RICH performance is less than 1%, it was deemed preferable to take data

with overall detector conditions as good as possible.

Other information coming from the shift crew during data taking is included under

logbook info, and allows 0.5% to be discarded in 2000. Unphysical values of the trigger

dead-time and burst length are also discarded.

Bursts for which the burst number is not continuous, which is usually at the begin-

ning of each run and fill, are also rejected, for data acquisition problems that have to

do with the synchronization. They are taken into account in the last two entries of the

table. Finally, 16% (top detector) and 18% (bottom detector) of the total delivered lumi-

nosity were rejected in the 2000 data production because of bad data quality, while for

the second half of 1998 data production this is true for about 9% of the total luminosity.

The total number of events selected for 1998 and 2000 are plotted in Fig. 3.8, while

the actual numbers are in Table F.1 for 1998 and F.2 for 2000.
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Figure 3.8: Number of DIS events compared to number of charge symmetric events for
1998 (left) and 2000 (right).
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3.4 Møller and Bhabha asymmetries

A residual electron polarization in the target gas can contribute to a polarization depen-

dence in the luminosity measurement. For this reason the raw luminosity rate is usually

fitted on a fill-by-fill basis, so that the effect for the two spin states cancels out in the fit-

ting procedure. The fitted values are provided by the luminosity experts. Until the 1999

production the fit was done to the luminosity rate itself, providing the LumiFit values.

Afterwards, since the current I is related to the luminosity L, the electron charge e
and the target density � by the relation I = Le� ; (3.55)

a fit was made to the ratio of luminosity to current, since the target density is a stable

quantity throughout a fill. A new fitted value for the luminosity was introduced, denoted

as LumiFitBstGai. This quantity has the advantage of being also gain-corrected.

The luminosity asymmetry, called Møller or Bhabha depending on the beam charge,

can be calculated as a function of time using the current as a normalization factorAMøller = L(!I)! �L)!I(!L(!I)!P + L)!I(!P : (3.56)

Such an asymmetry was calculated for LumiRate and LumiFitBstGai as a function

of time. The results are shown in Fig. 3.9 for top (left) and bottom (right) detectors,

for 1998 and 2000 data. It appears clear from the plots that the asymmetry calculated

with LumiRate is not compatible with zero, and has values of order 0.00125�0.0002 for

2000 and -0.0012�0.0003 for 1998. The signs are opposite because the beam charge was

opposite in the two years (positrons in 2000 and electrons in 1998).

It is worth noting that the asymmetries for top and bottom detectors are different not

because they have different measured luminosities but because some data may have been

rejected in top or bottom, because of bad data quality, giving different total luminosity

values. In conclusion the fitted luminosity has been used in 1998 and 2000 for the extrac-

tion of the DIS asymmetry, and it was verified to have a negligible contamination from

Møller and Bhabha rates.
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Figure 3.9: Møller Asymmetry for top (left) and bottom (right) detectors, calculated with
the different luminosity quantities available at HERMES. The top four plots are obtained
from 1998 data, while the bottom four plots are from 2000 data. A straight line fit is made
to each set of data points, with the results given by P1.

3.5 Alignment correction

The top and bottom detectors are slightly misaligned with respect to the target cell, a

problem studied for the 1997 data production in Ref.[36], where also an alignment cor-

rection was obtained. This is most visible in histograms of zv , which should be symmetric
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Figure 3.10: Top plots: comparison of zv distributions without (left) and with (right) the
application of the alignment correction. Bottom plots: zv distributions of total, DIS and
charge symmetric events, for top (left) and bottom (right) events. The vertical lines show
the usual cuts at zv = �18 cm.

around zv = 0, for both top and bottom detectors. The top-left plot of Fig. 3.10 shows a

top-bottom comparison of zv distributions of DIS events, for 1998 data. The two distri-

butions are not symmetric around zv = 0 as they should be, and their peak positions are

shifted by about 2 cm. This problem results in wrong measurements of the scattering an-
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Figure 3.11: Ratio of charge symmetric events over DIS candidates for 1998 data (left) and
2000 (right) data. In 1998 data the number of cs in the top detector has a steep rise that
has been explained with a spring finger left hanging inside the detector acceptance.

gles and zv , so must be corrected. The 1997 correction factor has been applied to the data

and the effect is shown on the top-right plot of the same figure. The correction highly

improves the data/Monte Carlo comparison ([37]), and all plots shown in this thesis for

the 1998 data have the correction applied.

The zv distribution for top DIS events even after being corrected, still shows an excess

of events in the positive zv region, coming from a peak located at about 32 cm.

In 1998 a spring finger, 3-4 mm long and 0.5 mm thick, used to connect the beam pipe

to the target cell, was forgotten inside the target region, hanging from the top of the cell.

Beam scattering off of this object thus created this peak. The target spring finger (TSF)

was removed only in May 1999, and it was thus present throughout the 1998 production,

but did not affect later productions. As a comparison, Fig. 3.11 shows the ratio of charge

symmetric (cs) to DIS events for 1998 (left) and 2000 (right), where it shows that the 2000

distribution is back to the levels of 1997. The TSF contribution is highest in the low x
region.

The bottom plots of Fig. 3.10 show the distribution of total (DIS+cs), DIS and cs events

for top and bottom detectors. Common to both detector halves is a peak located at -25
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cm, coming from scattering off the HERA collimator C2, while the top detector alone is

affected by the large background coming from the TSF. The usual cs subtraction reduces

the size of the background but does not eliminate it completely, meaning that there is an

actual excess of events with the same charge as the beam originating from C2 and from

the TSF, which, being unpolarized material, has no spin dependence. The collimator peak

has hardly any tail in the accepted region of zv between -18 and +18 cm, while the tail

from the TSF is instead considerable in size, and the major source of background. This

will be discussed further in section 3.11.3.

3.6 Asymmetries for 1998 and 2000

The asymmetryAdjj has been measured in the 49 kinematic bins, and the results are shown

in Fig. 3.12, where for clarity the data have been separated into the 3 y bins.

As explained before, the detector is divided into two symmetric halves, which can

effectively be treated as two different detectors. This fact proves helpful to check the

agreement of the two results and thus keep systematic effects under control.

The statistics of 2000 is overwhelming, and will have the highest weight on the final

results. The asymmetries agree very well in the whole kinematic range, but nevertheless
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Figure 3.12: The measured asymmetries for 1998 data (left) and 2000 (right).
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3.7. 2000 BEAM HELICITY FLIPS

many studies have been performed on its stability, that will be shown in the next sections.

The final result for gd1 will involve the weighted average of top and bottom asymme-

tries, which, in each kinematic bin, reads:Adjj = Adjj(TOP )w(TOP ) +Adjj(BOT )w(BOT )w(TOP ) +w(BOT )�2 = 1w(TOP ) + w(BOT ) ; (3.57)

where w stands for the weight 1=�2.

3.7 2000 Beam helicity flips

In the 2000 running period the beam helicity was switched between +1 and -1 for a total

of 7 periods. The resulting asymmetries for these periods have to be checked for con-

sistency throughout the seven periods. Table 3.3 gives a summary of the beam helicity

information through 2000. Statistical tests (which will be described later) were made, and

they didn’t show any unexpected behavior. Here it will only be shown that the asymme-

try for the positive helicity, spanning four periods, agrees with the one resulting from

the three periods with negative helicity. Fig. 3.13 (left) shows the agreement for top and

bottom detectors.

First run Last run Helicity # of runs # of fills

1 6109 +1 5075 57
6110 9404 -1 2430 31
9405 13204 +1 3112 39
13205 18168 -1 3669 33
18169 22579 +1 3467 33
22580 26713 -1 3123 37
26714 30354 +1 2068 33

Table 3.3: Summary of 2000 beam helicity conditions.

3.8 Effect of trigger efficiencies on the asymmetry

As discussed in section 2.7 the trigger efficiencies in 1998 and 2000 reached values as low

as 90%. Fortunately they have no effect on the measured asymmetry since every effect
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3.8. EFFECT OF TRIGGER EFFICIENCIES ON THE ASYMMETRY

coming from detector efficiencies cancels in the asymmetry ratio, provided that the effi-

ciencies are spin independent, which has been tested. As a confirmation, the correction

has been applied to 2000 data. Each event in each kinematic bin has been weighted by

the trigger efficiency as a function of momentum, the time period, the geometry and the

number of tracks. In this way the total number N of events in each bin has been substi-

tuted by: N ! NXi=1 1"(time; # of tracks;momentum; �x; �y) : (3.58)

The results are shown in Fig. 3.13, where the difference of uncorrected to corrected, over

uncorrected asymmetries is plotted. The error bars take into account the fact that the two

data sets are completely correlated (see App.E). Large values of error bars are due to

very small values of the asymmetries, which enlarge the errors. In conclusion, the trigger

inefficiencies have been verified to have no effect on the results.
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Figure 3.13: Left: comparison between the asymmetries calculated for the two possi-
ble beam helicities (2000 data). Ajj(H+) indicates the asymmetry calculated for positive
beam helicity, while Ajj(H�) is the asymmetry for negative beam helicity. Right: effect of
the trigger efficiencies on the asymmetry obtained from the 2000 data set. The two asym-
metries are in very good agreement, which shows the independence of the asymmetry
on the efficiencies.
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3.9. DEPENDENCE ON '
3.9 Dependence on '
The asymmetry should not have any dependence on the azimuthal angle ' (see Fig. 2.2).

To test it the detector has been ideally sliced into 50 top (0 < ' < �) and bottom (� <' < 2�) bins. In each kinematic bin the asymmetry in each ' bin, denoted with i, and its

deviation with the final asymmetry (that includes all ' bins) have been calculated, where

the deviation is defined as (see App. E)

deviation = Adjj('i � ' < 'i+1)�Adjj(0 � ' � 2�)q�2i � �2 ; (3.59)

and �i is the error of the asymmetry in the ith ' bin and � is the total error. The deviations

for each kinematic and ' bin are shown in the top plots of Fig. 3.14 for 1998 and 2000,

while the bottom plots represent the average deviations over all kinematic bins, for each' bin. The data from 1998 has larger fluctuations but they are mostly due to the smaller

statistics. No effect has been detected.
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Figure 3.14: Top plots: deviations of the asymmetry over all kinematic bins, for each '
bin. Bottom plots: average deviations in each ' bin. The errors are the standard devia-
tions of the distributions in the top panels. Left plots are for 1998 data while right plots
are for 2000.
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3.10 Statistical tests

As a general consistency check one can apply various statistical tests to the data, to verify

that the results do not depend on variables for which there should be no dependence.

This section deals with these tests.

3.10.1 z2 test

The asymmetry is tested against non-statistical dependencies on physical quantities.

A simple test is the z2 test ([38]), effectively a �2 test, treated in detail in App.D. The

asymmetry is divided into N bins of one variable (which can be referred to as t) it should

not depend on, for example time. The physical quantity of interest (in this case Adjj) is

divided into bins of such a variable. The z2 value gives an estimate of the spread of this

quantity in the bins. Given Adjji (the value of Adjj in a definite bin of x and y and bin i int), �i (the statistical uncertainty in that bin), and < Adjj > (the final value with statistical

uncertainty �), then z2 is defined as:z2 = 1N � 1 NXi 1�2i �Adjji �< Adjj >�2 : (3.60)

The ideal case should give z = 1. The allowed spread (68% confidence interval) is ([38]):�z = 1p2(N � 1) : (3.61)

The z2 test can be used to test the validity of the assumptions on the errors. If there is

some unknown systematic error, then the value of z will significantly differ from 1. On

one hand, the z2 test is a way to alert of the presence of systematic effects that should

be corrected for. On the other hand when it is not possible to cure the bias, it’s quite

common practice to normalize the error bars by multiplying them by the quantity z so

that the new z will be equal to 1. This procedure has to be used with care, since it’s a way

to hide systematic effects with enlarged error bars.

The z2 test has been used to check that the asymmetry had no large fluctuations in

time, zv position, ' and current. The results are shown in Fig. 3.15 and Fig. 3.16. No

dependence has been detected. Each test has been done for top and bottom detectors

separately.
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Figure 3.15: The z2 test applied to the time (top four plots) and current (bottom four
plots) dependence of Adjj. The dotted lines represent the 1� level. The left plots refer to

1998 and the right ones to 2000. The 1 � levels for time in 2000 are smaller since there are
more bins in time, given the much increased statistics with respect to 1998.

3.10.2 Mann-Whitney test

This test ([39]) is used to check whether or not there are any trends in the data. It is

applied to two sets of samples. As an hypothesis for the test the two samples have to be

independent, the dependent variable has to be intrinsically continuous, and it has to be

possible to order the elements of the set according to an ordering criterion. The purpose

is to understand if there is a trend in the data, i.e. if one set tends more than the other

towards lower or higher values. The null hypothesis of no trend is the hypothesis for

which the data are uniformly distributed.
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Figure 3.16: The z2 test applied to the zv (top four plots) and ' (bottom four plots) de-
pendence of Adjj. The dotted lines represent the 1� level. The left plots refer to 1998 and

the right ones to 2000.

Let us suppose we have two sets of data, the first set A containing NA elements and

the second set B containing NB elements, so that the total number of elements is N =NA +NB .

The elements of the two sets together are sorted in increasing order, and to each of

them a rank number is assigned. In the case of ties, i.e. if more than one data point has

the same rank, the assigned rank is the average rank they would get in case they were

not ties. The goal is to assess if the distribution of A’s and B’s is random or not, i.e. ifA’s tend to have lower rank or higher rank. Let us now introduce the numbers T obsA as

the sum of the ranks of the elements belonging to group A, T obsB as the sum of rank of
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elements in B, TAB as the total sum of ranks, and MAB as the mean rank. These are:TAB = N(N + 1)2 = (NA +NB)(NA +NB + 1)2 MAB = TABN = (NA +NB + 1)2 :
(3.62)

If the null hypothesis were true the ranks in the two groups would be distributed uni-

formly around the average, so thatTexpA =MABNA ; TexpB =MABNB : (3.63)

It can be shown ([39]) that the sampling distributions for T obsA and T obsB tend to approx-

imate the normal distribution for NA; NB > 5, with the same variance and standard

deviation, equal to:�T =sNANB(NA +NB + 1)12 �1� P ti(t2i � 1)N(N2 � 1) � ; (3.64)

where ti is the number of ties for each rank value. The correction for ties is small and can

be safely neglected if there are few ties and N is large.

Given the mean M and standard deviation �T of a distribution, one can create a z-

ratio, i.e. a quantity that refers to the unit normal distribution:z = (Tobs �M)� 0:5�T ; (3.65)

where the term �0:5 is a correction for continuity equal to -0.5 when T > M , and equal to

+0.5 for T < M . It is easy to prove that zA = �zB so that only one of the two is needed

for the Mann-Whitney test.

The Mann-Whitney test can be easily applied to the study of the time dependence of

the asymmetry Adjj. There are a number of ways to obtain two sets of data, each sensitive

to a different kind of trend.

In a given kinematic bin, the values in time of the top (bottom) detector asymmetry

can be assigned to set A (B): this is a way to check whether the top asymmetry was

consistently above or below the bottom one and vice-versa. Results of this test are shown

in Fig. 3.17 for 1998 and 2000.

Another test can be performed by associating a data point to group A (B) if its dif-

ference with the total Adjj is positive (negative). The values for Adjji � Ajj were ordered in
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Figure 3.17: The Wilcoxon and Mann-Whitney tests applied to the comparison of top and
bottom detectors time dependence of Adjj for 1998 data (left) and 2000 data (right plots).

The dotted lines represent the 1� level.

increasing (or decreasing) order of their absolute value, so that a succession of A’s andB’s was obtained. At this point the procedure outlined in this section was employed. The

results are shown in Fig. 3.18 for 1998 and 2000. This test assesses if the final top or bot-

tom detector asymmetry is the result of averaging values that were consistently above or

below the average in one period. This effect would not be detected by the z2 test, which,

being a �2 test, is only sensitive to the deviations of each point from the average.

The Mann-Whitney test can be a powerful tool to see whether data is clustered around

low or high values, but it has also some shortcomings, in the case that the elements of one

group tend to assume both low and high values, while the elements of the other group

tend to the middle values. The Mann-Whitney test would fail to recognize the trend of

the data and would give the false answer of no trend.

3.10.3 Wilcoxon test

The Wilcoxon test ([39]) is another test intended to verify if there are trends in 2 sets of

data. The hypothesis that the two sets have to satisfy are that the scales for the measure-

ments of the data in the two sets A and B have to be the same. The data are supposed to

have an underlying normal distribution. The two paired values from the two sets have

been randomly taken from the source populations. Since each element of each set will
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Figure 3.18: The Mann-Whitney test applied to the time dependence of Adjj for top and

bottom detectors for 1998 data (left) and 2000 (right). The dotted lines represent the 1�
level.

be paired to an element of the other set, the two sets need to have the same number of

elements.

The difference between each couple of elements is computed and ordered in increas-

ing absolute values and then ranked as in the case of the Mann Whitney test. Positive

differences will be assigned to the set A and negative differences to set B. Differences

equal to zero have to be treated in a slightly different way: if they are an even number

then half of it will be assigned to each set, while if they are in an odd number then one

will be discarded.

It can be shown that for large N the distribution of ranks tend to approximate a gaus-

sian distribution with standard deviation�T =rN(N + 1)(2N + 1)24 � 148X ti(t2i � 1) ; (3.66)

so that one can create a unit normal distribution in the same way as Eq. (3.65). This test

has been performed for the difference of asymmetries in top and bottom detectors, and

the results are shown in Fig. 3.17 for 1998 data in the left and 2000 data in the right, and

again no trend has been detected. The test can be applied also to top or bottom detectors

separately by assigning the asymmetry in a time bin to the set A or B if its difference

with respect to its average is positive or negative, and then ordering the differences in

increasing absolute values. This has been done and the results are shown in Fig. 3.19.
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Figure 3.19: The Wilcoxon test applied to the time dependence of Adjj for top and bottom

detectors for 1998 data (left) and 2000 (right).

3.11 Systematic uncertainties

3.11.1 Study of zv cut dependence of the asymmetry

The zv is the position of the interaction point along the z axis. The target cell is only 40

cm long, and the zero of the z axis is at the center of the target cell. This means that a

reconstructed target vertex cannot be accepted if it has jzvj >20 cm.

A standard cut of 18 cm is generally used, as a compromise to exclude the more

external regions of zv with their high background and keep the scattering vertex well

contained in the target. On the other hand the cut cannot be so tight as to significantly

lower the statistics.

Many studies have been made to test the stability of the asymmetry with respect to thezv . The zv cut has been varied around its standard value and the asymmetry calculated.

The deviations of the asymmetry from the nominal value as the zv cut is varied from 14

cm to 22 cm, defined as

deviation = Adjj(zv � jzivj)�Adjj(�18cm < zv � 18cm)qj�2i � �2j (3.67)

have been calculated for each kinematic bin, for top and bottom separately. In the last

expression ziv indicates the zv cut and �i the statistical error on the asymmetry for that cut.

The top Fig. 3.20 shows the deviations for 1998 and 2000, while the average deviations
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Figure 3.20: Top plots: deviations of the asymmetry with respect to the standard cutzv = 18 cm, over all kinematic bins, for top and bottom separately. The left plots are
for 1998 data while the right ones are for 2000. Bottom: deviations averaged over all
kinematic bins.

per cut and their standard deviations are shown in the bottom plots, and they are nicely

consistent with zero everywhere.

Fig. 3.21 shows the results of a z2-like test performed. The deviations of the asymme-
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Figure 3.21: A test similar to the z2 doesn’t show any dependence of the asymmetry onzv . The left plots are for 1998 data while the right ones are for 2000.
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try with respect to the asymmetry calculated for a zv cut of 18 cm have been computed

in different zv bins:z2i = 149 � 1 49Xi 1�2i �Adjj(ziv < zv � zi+1v )�Adjj(�18cm < zv � 18cm)�2 ; (3.68)

where ziv are the values of zv used to define the binnings. No large deviation is detected.

3.11.2 Dependence of the asymmetry on the �y cut

As for the zv cut, the �y cut has also been studied to verify the stability of the asymmetry.

The angle �y defines the angular acceptance in the vertical direction, and it is sensitive

to misalignments. The �y cut of 0.04 rad has been varied from 0.038 to 0.044 around the

standard cut of 0.040 rad, and the deviations of the asymmetry in each kinematic bin are

studied. The top Fig. 3.22 shows the deviations of the asymmetry with respect to the

standard asymmetry for each cut, while the bottom plots are the average deviations with

their standard deviations, for each cut. No effect is detected.
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Figure 3.22: Top: deviations of the asymmetry calculated by varying the �y cut, with
respect to the standard cut. Bottom: average deviations for each cut. The errors are the
standard deviations of the plots in the top panels. The left plots are for 1998 data while
the right ones are for 2000.
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Figure 3.23: Data-Monte Carlo comparison for top detector events ([37]). There is a clear
excess in the data at low-x, explained as coming from the TSF. This is not seen for a
bottom detector-Monte Carlo comparison.

3.11.3 1998 data: Target Spring Finger Problem

A serious problem exists in the 1998 data in the study of low x bins. The zv distribution

of DIS top events shows a peak at around 32 cm coming from the TSF, as was shown in

Fig. 3.10. The bottom distribution seems much more consistent with the values from the

1997 production.

As Fig. 3.10 shows, a common charge-symmetric subtraction doesn’t help to solve

the problem: the peak is still visible. This means that the events building up in that peak

could come from a different process that is not removed by the usual subtraction. These

events could come from DIS scattering off the aluminum of the TSF.

The way the asymmetry is corrected due to this additional rate is by trying to disen-

tangle the true rate from the TSF rate.

From data-MC comparison shown in Fig. 3.23 it is justified to assume that the TSF

only affects the top events. In this case we can write the top and bottom total number of
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Figure 3.24: Left: correction factor C to be applied to the asymmetry to correct it due to
TSF events, as a function of zv and x. The correction is relevant only in low x bins. Right:
the systematic uncertainty on the asymmetry, estimated as the difference between the
corrected asymmetry at 18 cm and 30 cm (where the TSF contribution is a maximum).

events as: N�(TOP)
meas = N (TOP)

dis
+N�(TOP)

cs +N (TOP)
TSFN�(BOT)

meas = N (BOT)
dis

+N�(BOT)
cs ; (3.69)

where we dropped the negative sign on Ndis since in 1998 there was an electron beam,

and N (TOP)
TSF

is the cs-corrected TSF rate. From a high x fit ([37]) not including the 7 low-x
points, it was determined that the ratio of top to bottom DIS events, normalized to the

luminosities, is a stable quantity:N (TOP)
dis

=LTOPN (BOT)
dis

=LBOT
' 0:96 (3.70)

so that by inserting Eq. (3.70) into Eq. (3.69) we get:N (TOP)
TSF

= N�(TOP)
meas �N�(TOP)

cs + 0:96(N�(BOT)
meas �N�(BOT)

cs ) (3.71)

where the luminosities cancel in the ratio. The TSF rate was checked to be independent
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of the spin state so that it acts as a dilution factor on the asymmetry:ATOPjj = ATOPjjmeas1�N (TOP)
TSF

=N (TOP)
dis

= 1C ATOPjjmeas : (3.72)

The systematic error due to the TSF was assessed from the zv cut variation, as shown

in Fig. 3.24, which shows in the left plot the TSF contribution for different zv cuts. As

expected, for cuts that include higher values of zv the correction gets stronger, since the

TSF contributes more. The systematic uncertainty was then defined as the difference

between the asymmetry with a zv cut at 30 cm and at 18 cm, as shown in the right panel

in Fig. 3.24: �ATSFjj = jA30jj �A18jj j : (3.73)

The TSF affects also the luminosity, since it affects the count rate, and this contribution

affects all 49 bins.

3.11.4 Hadronic background

In the extraction of the asymmetry one has to take into account that there is a fraction

of hadrons misidentified as DIS leptons. The number of hadrons turns out to be spin-

dependent and to have a non-trivial spin asymmetry:Ah� = N(!L)! �N)!L(!N(!L)!p +N)!L(!p : (3.74)

The hadron asymmetry has been extracted by requiring PID<-2, which is a tight require-

ment for the hadron identification. The extracted asymmetries are small compared to the

DIS asymmetry everywhere except in the small x region, where the two are comparable.

A correction for the hadronic background must be obtained. Let us introduce hcand

and hcs as the fraction of DIS candidates and charge-symmetric background which comes

from hadrons, and "cand and "cs as the PID efficiencies in the identification of a particle

as a lepton or a hadron in the case of DIS candidates and cs background.

The true number of DIS events is obtained by subtracting the contribution of misiden-

tified hadrons and charge symmetric particles:Ndis = Ncand"cand
(1� hcand)� Ncs"cs

(1� hcs)= N true
cand(1� hcand)�N true

cs (1� hcs) ; (3.75)
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where N true
cand = Ncand="cand and N true

cs = Ncs="cand are the true candidates and cs,

corrected for efficiencies.

The real asymmetry has then to be disentangled from these contributions. The cs

contribution is taken into account just by subtracting the number of cs events from the

number of DIS candidates. The true asymmetry is:Atruejj =N(!disL)! �N)!disL(!N(!disL)!p +N)!disL(!p= hN true(!
cand (1�h(!cand)�N true(!

cs (1�h(!cs)iL)!�hN true)!
cand (1�h)!cand)�N true)!

cs (1�h)!cs)iL(!hN true(!
cand (1�h(!cand)�N true(!

cs (1�h(!cs)iL)!+hN true)!
cand (1�h)!cand)�N true)!

cs (1�h)!cs)iL(!= Ameasjj �Ah
candjj ~hcand +Ahcsjj ~hcs1� ~hcand + ~hcs

; (3.76)

where ~hcand = N(!
candh(!candL)! +N)!

candh)!candL(!�N(!
candL)! +N)!

candL(!�� �N(!
csL)! +N)!

csL(!� (3.77)~hcs = N(!
csh(!csL)! +N)!

csh)!csL(!�N(!
candL)! +N)!

candL(!�� �N(!
csL)! +N)!

csL(!� : (3.78)

The effect of the hadronic contamination has been estimated ([40]) from the ratio of

background-corrected to uncorrected values ofAdjj=D. The correction is very small, reach-

ing a maximum value of 0.04% around x=0.01, and it is negligible for x >0.12.

3.11.5 Radiative corrections

In the extraction of gd1 from the measured asymmetry, gd1 has to be corrected for radiative

processes. To extract the Born asymmetry from the measured results different sources of

radiative effects must be taken into account.

Elastic and quasi-elastic background. The electron can exchange a photon with the nu-

cleus or the nucleon, without breaking them, and these processes are referred to as elastic

and quasi-elastic. These processes constitute a pure background to the DIS events and

their cross sections simply have to be subtracted from the measured values. By definition
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Figure 3.25: Initial state radiation (left), and final state radiation (right).Even if these
events are DIS, their measured Q2 and x are not the true ones, so an unfolding method is
needed to bring back each event into the kinematic bin it belongs to.

the elastic peak is at x = 1, but also lowQ2 means elastic, since for low momentum trans-

fer the nucleon does not break. Since in our experiment low Q2 is also low x, then we

have a high elastic and quasi-elastic contribution at low x, mostly in the first 10 kinematic

bins. A way to get rid of the elastic tails in an almost clean way is to do hadron tagging,

that is to require a hadron in the final state, associated to the event, to make sure that the

event was pure DIS, thus not elastic. Problems arise in this procedure, since very often

hadrons are not detected, due to the small acceptance of the detector: there is a loss up to

15-20% due to hadron tagging.

Radiation A DIS electron can radiate a photon before or after the DIS interaction (see

Fig. 3.25), thus changing the measured kinematic quantities, such as Q2 and x. BecauseQ2 = 4EE0 sin2(�=2), regardless whether the initial E or the final E0 energies are lower

than measured, Q2
meas will always be lower than Q2

true. For x the situation is different:x = 2EE0 sin2(�=2)=(M(E � E0)), so that the true value of x will be higher (lower) than

the measured one if the photon is radiated after (before) the DIS interaction. The event is

then placed into the wrong kinematic bin.

The Born asymmetry is usually extracted with a Monte Carlo simulation. A model

asymmetry Amodel
Born

obtained from a fit to world data is used as an input to the POL-

RAD ([41]) program, which computes the asymmetry corrected for radiative processesAmodel
corr . Given Amodel

Born
, Amodel

corr and the measured asymmetry which in this context

we can denote with Aexp
corr, the Born asymmetry is extracted with an ansatz, requiring

that the difference between Born and corrected asymmetry is the same for model and
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experiment: Aexp
Born

= (Amodel
Born �Amodel

corr ) +Aexp
corr : (3.79)

As a consequence of this method the central values of the measured asymmetry are

shifted, while the statistical errors are unchanged. It has been used before in HERMES

publications such as Ref.[42].

A second commonly used ansatz ([43]) is that the ratio is constant:Aexp
Born

=0�Amodel
BornAmodel
corr

1A � Aexp
corr ; (3.80)

which changes both central values and statistical errors. Usually an error is assessed to

the extraction of the Born asymmetry by comparing the results of two methods. In the

case of deuterium data the asymmetry is very small and consistent with zero in the smallx region, where the corrections are higher, so that the multiplicative ansatz of Eq. (3.80)

cannot be reliably used.

The Born asymmetry was actually obtained with a method already applied by SMC

([44]), by using the relation ([45]):Aexp
Born

= 1� 0B�Aexp
corr

0B��+ �unpol
bg�unpol
DIS

1CA� �pol
bg�unpol

DIS

1CA ; (3.81)

where 0:9 < � < 1:2 is a spin dependent term which contains the virtual photon correc-

tions and soft real bremsstrahlung corrections, �(un)pol
bg

are the background (un)polarized

tails and �unpol
DIS

the unpolarized DIS cross-sections. Corrections are large (ABorn=Ameas' 0:3) in the low x region, decreasing rapidly, with a ratio of 0.9 around the 15th bin, and

1.0 around the 30th.

As a consistency check, the asymmetry using the hadron tagging method has also

been calculated from data. The radiative corrections to the latter do not require the

subtraction of elastic contributions so that they only need to be corrected for the DIS

part. The agreement between the Born asymmetries obtained from full data and hadron-

tagged was quite good and gave good confidence in the method. The final systematic

error is obtained from the difference of the additive method of Eq. (3.79) and the SMC-like

method. The error in gd1=Fd1 coming from the extraction method is as high as 0.013 in the
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lowest x bin, decreasing rapidly to 0.002 in the 8th bin, from which point it is negligible

compared to the error coming from the target and beam polarizations.

3.11.6 Other sources of systematic uncertainties

In this section the other sources of systematic uncertainties will be discussed. The main

detector uncertainties come from the target and beam polarizations, and from the nor-

malization. The total systematic errors have been obtained from a sum in quadrature of

the individual errors. They are dominated by radiative corrections at low x and by beam

and target polarization in the high x region.

Polarizations. The target group estimated a target polarization error of 4% on 2000 data,

and 8% on 1998 data, as a preliminary upper limit. The beam polarization uncertainty

was estimated to be 3.4% in 1998 and 2% in 2000. The systematic uncertainties coming

from beam and target polarization in 1998 were smoothed out with a simple polynomial

fit to g1=F1 (�target(g1=F1) = �0:03 + 1:01x � 0:49x2, with a �2 = 1:015), since the data

points had large fluctuations. This was not necessary for 2000 data.

Normalization. A wrong estimation of the luminosity brings a normalization problem

in the asymmetry, and a way to estimate the error is by calculating the asymmetry with

two different normalization methods. Beam current and fitted luminosity are two in-

dependently measured quantities, and the results using the two quantities in the asym-

metry should agree since the two differ only by a multiplicative factor coming from the

target density, a stable quantity.

Fig. 3.26 shows the difference between the asymmetry calculated with current and fit-

ted luminosity, for top and bottom detectors: a very constant value, 0.0009, was found for

2000, but not for 1998. The difference can be explained with the different fitting procedure

for the two years, and the different beam charge. It is interesting to see that the difference

between the asymmetry calculated for the raw luminosity rate and the one obtained with

the fitted luminosity is of the same order of magnitude as the Møller asymmetry.

The systematic error on gd1=Fd1 due to the normalization uncertainty was estimated as�norm = (Ajj(LumiFitBstGai)�Ajj(current))=D(1 + 2) which, for the case of 2000,
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Figure 3.26: Comparison of different normalization methods for 1998 (left) and 2000
(right), for top and bottom detectors.

is �norm = 0:0009=D(1 + 2) (see Eq. (3.24)).

This error is believed to also take into account the TSF contribution to the luminosity

in 1998 data. Since the current is not affected by the TSF, there is no need to consider an-

other systematic contribution coming from the wrong evaluation of luminosity because

of the TSF.

A proper evaluation of normalization and polarization uncertainties is very impor-

tant because these quantities cause g1 to be measured only up to a normalization factor.

This issue will be addressed in next chapter, where how to correct for this problem when

making fits to world data will be discussed.

Background. The contribution coming from the hadronic background was obtained

through a fit of the ratio of gd1=Fd1 as a function of x with and without the hadronic con-

taminations. The fit slightly overestimated the error in order to include all the points.

Details are in Ref.[40].

Parameterization of A2. The common assumption that g2 = 0 has been ruled out by

the E155 experiment ([31]), as was shown in Fig. 3.3. The uncertainty coming from the

knowledge of A2 was estimated through the difference of a fit to A2 data from E155 and
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3.11. SYSTEMATIC UNCERTAINTIESA2(g2 = gWW2 ), versus x. The E155 results were fitted to A2 = 0:22x=pQ2 in Ref.[40].

The gd1=Fd1 parameterization used for the calculation of AWW2 in Eq. (3.39) was ([46]):

gd1
Fd1 = (e�8:29x � 1)(0:03240:143 � x0:143) : (3.82)

Parameterization of Fd2. Available parameterizations for Fd2 are the eight ([24]) and the

fifteen ([25]) parameter fits from NMC, which do not include more recent data from NMC

([47]) and E665 ([48]). Fd2 can also be obtained from the relation

Fd2 = 12 �Fn2
Fp2 + 1� � Fp2 (3.83)

by using the available parameterizations of Fn2=Fp2 from NMC ([24]) and the ALLM Fp2
described in Refs. [49] and [50].

The agreement of these three possible parameterizations with the newer data from

NMC and E665 was tested. Special care was taken for the agreement within the HERMES

kinematic range. The P8 fit from NMC had large deviations from the data, so it was

discarded ([51]). The other two fits agreed well with data. The fifteen parameter fit was

used in this thesis for the extraction of gd1. The systematic error was estimated as 2.5%

over the whole kinematic range, except the lowest x point, with 3%. This value comes

from the quadratic combination of the normalization uncertainties of NMC and E665.

Fig. 3.27 shows the various contributions to the total systematic uncertainty coming

from the different sources, separately for 1998 and 2000. Fig. 3.28 shows the final results

for gd1=Fd1 and xgd1. Data from 2000 are clearly dominating the result over the 1998 dataset.

The final combined result of the two years was obtained from the weighted average of

the two. The systematic errors were also weighted with the statistical error to get the

final systematic errors.
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Figure 3.27: Systematic errors on gd1=F d1 for 1998 and 2000, and their source.
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Figure 3.28: The extracted gd1=Fd1 (left) and xgd1 (right) as a function of x for 1998 (top), 2000
(middle) and the combined results of 1998 and 2000 (bottom). The results are shown in
bins of the y variable. The statistics of 2000 data dominate the final results. The errors on
the data points are statistical, while the bands represent the systematic errors.
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Chapter 4

Deep inelastic scattering

4.1 Operator Product Expansion

The Operator Product Expansion (OPE) ([52], [53]) was designed exclusively for the un-

derstanding of deep inelastic lepton-nucleon scattering and to describe the Q2 behavior

of the structure functions. It is a powerful tool for deriving sum rules (relations among

the first moments of structure functions) in terms of very general quantum field theoret-

ical considerations without the need for a specific hadronic model. Sum rules obtained

from the OPE thus provide a direct test of QCD.W�� is the Fourier transform of the nucleon matrix element of the commutator of

electromagnetic currents J(x):W��(q; P; S) = 12� Z d4xeiq�x hPSj [J�(x); J�(x)℄ jPSi ; (4.1)

where jPSi is the nucleon state with momentum P and spin S. The forward Compton

amplitude is: T��(q;P; S) = iZ d4x eiq�x hPSjT(J�(x); J�(0)) jPSi= hPSj t�� jPSi ; (4.2)

with t�� = iZ d4x eiq�x T(J�(x); J�(0)) ; (4.3)

where T stands for the time ordered product. W�� and T�� can be split into two parts of

definite symmetry (S,A), and it can be shown (from the optical theorem) that W�� can be
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4.1. OPERATOR PRODUCT EXPANSION

related to T�� (see Fig. 4.1): W (S;A)�� = 1� Im T (S;A)�� : (4.4)W (S)�� is independent of spin, so we can neglect it for our purposes, since we are interested

in polarization effects.

π=

2

Σ
f

q

p f 1 Im

Figure 4.1: The optical theorem relates the Deep Inelastic Scattering process (left) to the
Virtual Photon Compton Scattering (right).

Since the forward Compton amplitude is a matrix element of a product of currents

(see Eq. (4.2)), an alternative method for calculating W�� is to expand this product as a

series of local (dependent on the position) operators, and this can be achieved by using

the optical theorem which relates W�� to T�� . This method makes use of asymptotic

freedom: the computation of the operator product coefficients will take place explicitly

at a small distance of order 1=Q, which allows the calculation of these coefficients in a

perturbation theory whose coupling constant is �s(Q2).
Let us consider the antisymmetric part of the Fourier transform of the operator product

appearing in Eq. (4.2). It is the Fourier transform of the product of two local operators

in two close-by points x and 0. The main goal of the Operator Product Expansion is to

expand t�� in terms of local operatorsOi.
Let us then consider the product of two local operators ([54])Oa(x)Ob(0) : (4.5)

In the limit x ! 0 they are evaluated practically in the same point. In this limit the

operator product can be written as an expansion of local operators:limx!0Oa(x)Ob(0) =Xk k(x)Ok(0) (4.6)
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4.1. OPERATOR PRODUCT EXPANSION

where the dependence on x is now in the coefficient functions k(x). The two sides in

Eq. (4.6) are equivalent as long as one does not probe this relation at distance scales

smaller than x. Because of asymptotic freedom, the coupling constant �s is small at short

distances; thus the coefficient functions can be computed as a perturbative expansion,

since all non-perturbative effects occur at scales much larger than x, and do not affect

the computation of the coefficient functions. The same reasoning is valid when one takes

the Fourier transform to go to momentum space: by taking the limit q ! 1, one forcesx! 0, so that the product can be expanded in local operators:limq!1Z d4x eiq�xOa(x)Ob(0) =Xk k(q)Ok(0) : (4.7)

This expansion is valid for all matrix elements, provided that q is much larger than the

characteristic momentum of any external state. In Eq. (4.3) the operators are currents,

containing quark operators; at small distances the contribution of gluons will have to

be considered, so that a general expansion will contain both quark and gluon operators,

with arbitrary dimension d and spin n. Only the coefficient functions will be dependent

on q and the operators will not depend on it. The fact that the operatorsOk(0) are of spinn means that they will have n free indices �1:::�n, so that the expansion (4.7) will look

like: Xk k(q)(Od;n)�1:::�nk : (4.8)

The indices in the operators will come from the components of P alone, in the case of a

vector operator, while there will be a helicity vector component, in the case of an axial op-

erator. In the case under study, of T�� , there are 2 free indices � and �, so the indices in the

coefficient functions (components of q) and those in the operatorO have to be contracted

in such a way to leave 2 free indices � and �. This leaves the following possibilities for

the dependencies on P �, q�, and S� in the case of vector (left column) and axial (right

column) operators:(q�q� q�1 :::q�n)(P �1 :::P �n) ; (q�q� q�1 :::q�n)(S�1P �2 :::P �n) ;(q� q�1 :::q�n�1)(P� P �1 :::P �n�1) ; (q� q�1 :::q�n�1)(P� S�1P �2 :::P �n�1) ;(q�1 :::q�n�2)(P�P� P �1 :::P �n�2) ; (q�1 :::q�n�2)(P�P� S�1P �2 :::P �n�2) :
87



4.1. OPERATOR PRODUCT EXPANSION G�� D� D�D�
d 3/2 2 1 2
n 1/2 1 1 0
t 1 1 0 2

Table 4.1: Twist t of some operators, given their dimension d and spin n.

For each case, in the left brackets there is the dependence of the coefficient functions onq�, while in the right brackets there is the dependence on P � and S� (the dependency onS� is present only in the axial operators).

One has then to evaluate Eq. (4.3) between two hadron states (see Eq. (4.2)). The

expression in Eq. (4.3) has dimension 2, each hadron state has dimension -1, so that T��
has dimension 0. T�� is the product of the coefficient functions times the matrix elements

of the operatorsO:T�� � k < O > ! dim[T�� ℄ = dim[k℄ + dim[< O >℄ = 0 : (4.9)

The dimension of< O >must be d�2 (=dim[O]-2dim[jPSi]). Since in the DIS limit bothP � q and S � q are of orderQ2, on dimensional grounds the Q2 behavior of< O >must be< O >�Md�2�nQn ; (4.10)

so that the dimension of the coefficient functions must be Q2�d. The overall behavior ofT�� has to be, then: T�� � Q2�d QnMd�2�n = � QM�n+2�d� Q2�t ; (4.11)

where we introduced the twist t as the difference between the dimension and the spin of

an operator: t = d� n = dimension - spin : (4.12)

Table 4.1 shows the twist of four common operators (quark field  , gluon field G�� , co-

variant derivative D�, and D�D�), given their spin and dimension.

The most important operators in the operator product expansion are those with lower

twist, since those with higher twist will have a negligible contribution at high Q2. Twist-

2 operators contribute a finite amount in the DIS limit, twist-3 operators are suppressed
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4.1. OPERATOR PRODUCT EXPANSION

by M=Q, etc. Any gauge invariant operator must contain at least two quark fields, or

two gluon field tensors, together with any number of covariant derivatives, so the lowest

possible twist is 2.

4.1.1 The expansion

It is important to note that the Operator Product Expansion approach can be used only

because of the fully inclusive nature of DIS under consideration: W�� reduces to Eq. (4.1)

as it is a sum over all possible final states XW�� /XX hPSjJ� jXi hXj J� jPSi : (4.13)

The most general form of the expansion of the antisymmetic part of the Fourier transform

of the operator product appearing in Eq. (4.2) is, in terms of twist 2 and 3 operators ([55]):t�� = iZ d4xeiq�xT(J�(x); J�(0)) = (4.14)= �i 1Xn=1;3;5� 2Q2�n q�1 ::q�n�2Xi Æi n"����q�q�n�1En1;i(Q2; �s)O��1::�n�11;i ++ �"����q�q� � "����q�q� � q2"����� n� 1n En2;i(Q2; �s)O���1 ::�n�22;i �
where i identifies the possible operators: i = 1; ::; 8;  ;G, and E1;i, E2;i are the coefficient

functions, also called Wilson coefficients.

The operators with i = 1; ::; 8 transform as SU(3) flavor octet (see App.A), while those

with i =  (quark operators) and i = G (gluon operators) are flavor singlets. The oper-

ators of twist 2 and 3 are shown in Table 4.2. We will come back to the fact that gluon

operators enter in the lower twist expansion.

4.1.2 Determination of the coefficient functions

The generic term in Eq. (4.3) can be written as the sum of quark OQ and gluon OG
operators: JJ � QOQ + GOG ; (4.15)

so that the matrix element on a quark state jQi is:hQjJJ jQi � Q hQj OQ jQi+ G hQj OG jQi : (4.16)
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4.1. OPERATOR PRODUCT EXPANSION

twist i operator

2 1...8 O��1::�n�11;i = (i)n�1� � 5�D�1 ::D�n�1 ��i2 � �S
n � 1

2  O��1::�n�11; = (i)n�1 � � 5�D�1 ::D�n�1 	S n � 1
2 G O��1::�n�11;G = (i)n�1Tr

n"���G�D�1 ::D�n�2G�n�1� o
S

n � 2
3 1...8 O���1 ::�n�22;i = (i)n�1� � 5�D�D�1 ::D�n�2 ��i2 � �S0 n � 2
3  O���1::�n�22; = (i)n�1 n � 5�D�D�1 ::D�n�2 o

S0 n � 2
3 G O���1 ::�n�22;G = (i)n�1Tr

n"���G�D�1 ::D�n�2G��oS0 n � 2
Table 4.2: Lower twist operators. �i are the SU(3) matrices defined in App.A. S stands
for symmetry over all indices, while S0 means symmetry over ��, and over �1::�n�2.

The electromagnetic current is a quark operator, so that the left hand side is of order�0s . The matrix element hQj OQ jQi is also of order �0s , while the term hQj OG jQi must

be of order �1s since there are at least two gluons in OG. Thus one can determine Q to

leading order by taking the matrix element of both sides of the OPE, and by neglecting

the contribution of gluon operators because it is suppressed by one power of �s.
Scattering off a free quark ([54]). In the following we will suppose that there is only

one quark flavor. The quark matrix element of the left hand side of the OPE in Eq. (4.15)

is: M�� = i e2f �up;s�i (=p+ =q)(q + p)2 �up;s + crossed diagram (�$ �; q ! �q) ; (4.17)

where ef is the quark charge, p is the quark initial momentum, q is the photon four-

momentum, up;s is the Dirac spinor for the quark field, and �up;s = uyp;s0, uyp;s being the

hermitian conjugate of up;s. The first term in Eq. (4.17) refers to the first diagram in Fig.

4.2, while the crossed diagram is the one on the right. Since the second diagram can be
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p+q

p−q
q q qq

p,sp,s p,s p,s

Figure 4.2: The lowest order diagrams contributing to the matrix element M�� .

derived from the first one by replacing � $ � and q ! �q, we will just concentrate on

the first diagram. The expansion of the denominator gives (for on-shell massless quarks):(p+ q)2 = 2p � q + q2 = q2�1 + 2p � qq2 � = q2(1� !) ; (4.18)

and ! = �2(p � q)=q2. The numerator contains the product of 3 gamma-matrices, that can

be simplified by using the identity:��� = g��� + g��� � g��� + i"�����5 : (4.19)

Also: =pup;s = 0 ; �up;s�up;s = 2p� ; �up;s�5up;s = 2hp� ; (4.20)

where h is the quark helicity. So, by combining the various terms, and using the identity

(valid for ! < 1!) (1� !)�1 =P!n, we get for the first diagram in Fig. 4.2:M�� = � 2q2 e2f 1Xn=0!n[(p+ q)�p� + (p+ q)�q� � g��p � q + ih"����q�p�℄ : (4.21)

Let us now just concentrate on the spin dependent part of Eq. (4.21), and let us add to it

the cross diagram term of Eq. (4.17):M�� = � 2q2 e2f 1Xn=0!nih"����q�p� + crossed diagram (�$ �; q ! �q; ! ! �!)= � 2q2 e2f 1Xn=0 ih"����q�p�!n (1 + (�1)n)= � 4q2 e2f 1Xn=0;2;4�2p � qq2 �n ih"����q�p�= 1Xn=1;3;5 2� 2�q2�nq�2 :::q�n ih"����q� p�p�2 :::p�n e2f : (4.22)

91



4.1. OPERATOR PRODUCT EXPANSION

As previously stated, the coefficient functions depend only on q, while the matrix el-

ements depend only on p. By equating the first term of Eq. (4.14) and Eq. (4.22) we

determine the expression for the coefficient functions En1;i:Xi ÆiEn1;i = e2f : (4.23)

Scattering off a nucleon ([54]). To compute T �� we need the hadronic matrix element of

the OPE. These matrix elements are unfortunately unknown, so we need to parameterize

them in terms of a known tensor structure times an unknown normalization coefficientan. Let us take the example of a spin 1/2 target. The matrix element of an axial vector on

the target will be of the form:hPSj O�1:::�nA jPSi = an[S�1P �2 :::P �n ℄S = anS�1P �2 :::P �n + higher twist terms� (4.24)

where S indicates permutation over all indices. One then finds, following the same rea-

soning as in the free quark matrix case (see Eq. (4.22)):T �� = 1Xn=1;3;5 2Xi Æi En1;i i "����1 q� 2nq�2 :::q�n(�q2)n ain S�1P�2 :::P�n= 1Xn=1;3;5 2 Xi Æi En1;i i "����1 q� S�1 ain !n�1= i "���� q� S� ~g1P � q (4.25)

with ~g1 = 1Xn=1;3;5 2Xi ÆiEn1;iain!n (4.26)

where we used the definition ! = �2(P � q)=q2. The quantity ~g1 is the Compton scatter-

ing analog of g1 for DISy, and the OPE has allowed us to compute it as a power series in�In reality the relation would be [S�1P�2 :::P�n ℄S = S�1P�2 :::P�n + R�1:::�n . The tensor R has no
symmetric part and has spin n � 1, rather n. Thus its contribution is of higher twist, even though it came
from the matrix element of a twist 2 operator.yT�� has an expansion similar to W�� :T�� = ��g�� + q�q�q2 � ~F1 +�P� � P � qq2 q���P� � P � qq2 q�� ~F2P � q ++ i~g1P � q "���� q�S� + i~g2(P � q)2 "���� q� �P � q S� � S � q P �� : (4.27)
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4.1. OPERATOR PRODUCT EXPANSION! about ! = 0 in QCD. The nth term in the expansion is due to an operator of twist 2 and

spin n. It is important to note that this expression was derived using the assumption thatj!j < 1; however, the physical region is just the opposite:! = 2P � qQ2 = 1x > 1 : (4.28)

From the optical theorem it follows that the relation between ~g1 and g1 is:~g1(! + i")� ~g1(! � i") = 4�i g1(!) : (4.29)

The coefficient functions can be extracted with an integration on the ! plane, as shown

−1 +1

B

A

ω

ε

Figure 4.3: The ! plane.

in Fig. 4.3, with a contour of integration A with j!j < 1:12�i ZA 1Xn=1;3;5 2Xi Æi En1;i ain !n 1!k+1 d! = 12�i ZA ~g1 1!k+1 d! ; (4.30)

from which it follows that:2Xi Æi En1;i ain = 12�i ZA ~g1 1!n+1d! : (4.31)

The contour A can be modified to a contour B that includes the physical region, by ex-

panding that radius to infinity. Under the hypothesis that there is no contribution from

the region at infinity we get the momentum sum rule for the odd momenta of g1:2Xi ÆiEn1;iain = 12�i ZB ~g1 1!n+1d!
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4.2. SUM RULES= 12�i �Z �1�1 ~g1(! + i") 1!n+1 d! � Z �1�1 ~g1(! � i") 1!n+1 d!++ Z 11 ~g1(! + i") 1!n+1 d! � Z 11 ~g1(! � i") 1!n+1 d!�= 12�i �Z �1�1 4� ig1(!) 1!n+1d! + Z 11 4� ig1(!) 1!n+1d!�= 2 �1� (�1)n+1� Z 11 4�i g1(!) 1!n+1 d!= 4Z 10 xn�1g1(x)dx n odd (4.32)

where we used the fact that ! = 1=x and:

g1(�!) = �g1(!) (4.33)

coming from its definition. The integral appearing in the last line of Eq. (4.32) is called then-th moment of g1. The momentum sum rules relate a quantity defined at high energy

(such as g1) to a low energy quantity, the zero momentum transfer matrix element of a

local operator. In the same way, one can derive sum rules for the even moments of the

unpolarized structure function F1. For the other moments there are no sum rules, even

if there have been many attempts to define some. The only questionable assumption

in the derivation of the sum rules is that the contour at infinity (which means x = 0)

gives no contribution. This contribution can be experimentally checked to be zero, and a

confirmation of this hypothesis would come from the measurement of g1 at small x. The

sum rules become more convergent at higher moments, so any problem of convergence

is in the lower moments.

4.2 Sum Rules

4.2.1 First moments

As previously discussed, the Operator Product Expansion gives results for the moments

of the structure functions in terms of hadronic matrix elements of certain operators mul-

tiplied by perturbatively calculable coefficient functions. We are mainly focusing on g1.

The general expression for the moments of g1 is given by Eq. (4.32):Z 10 dx xn�1g1(x;Q2) = 12Xi ÆiainEn1;i(Q2; �s) n = 1; 3; 5; ::: (4.34)
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The presence of En1;i implies that only operators of spin n contribute to the n-th moment,

which implies that in the case n = 1 only operators of spin 1 contribute. These operators,

from Table 4.2 are the octet of quark SU(3)F axial-vector currents J j5� (j=1,...,8) and the

flavor singlet axial current J05�:J j5� = � �5��j2 � j = 1; :::; 8 (4.35)J05� = � �5 ; (4.36)

where the �j matrices are defined in App.A. The terms ai1 (which in the following we

will refer to as ai) are the matrix elements of the currents taken between nucleon states

of definite momentum and spin directionz.
The forward matrix elements can only be proportional to the covariant spin vectorS�(h) (corresponding to the definite helicity h), so that the conventional definition of ai

(see Eq. (4.24)) is: hPSj J j5� jPSi = MajS�hPSj J05� jPSi = 2Ma0S� ; (4.37)M being the nucleon’s mass. The relative factor 2 in Eq. (4.37) reflects the fact that the

SU(3) currents are defined using the generators of the group, i.e. �j=2 in Eq. (4.35).

It is also possible to show([21]) that the matrix elements of the flavor axial currents on

the nucleon are related to the polarized quark distributions:hPSj � f�5 f jPSi = 2MS� Z 10 dx [�qf +��qf ℄ ; (4.38)

so that the coefficients appearing in the first moment of g1 are actually sums of polarized

distributions, and, in particular:a3 = Z 10 dx[(�u(x) + ��u(x))� (�d(x) + ��d(x))℄a8 = 1p3 Z 10 dx[(�u(x) + ��u(x)) + (�d(x) +��d(x))� 2(�s(x) + ��s(x))℄a0 = �� = Z 10 dx[(�u(x) + ��u(x)) + (�d(x) + ��d(x)) + (�s(x) + ��s(x))℄ :
(4.39)zJ05� is sometimes defined as in (4.35) with �0=2 = (1=p6)Î, where Î is the unit matrix.
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The natural interpretation of a0 is that it represents the total spin of the nucleon carried

by the quarks, but it will be shown why this assumption cannot hold.

The first moment of g1 (also known as �1) can be expressed in terms of a3, a8 and a0
as: �p1 = Z 10 dx gp1(x) = 112 �a3 + 1p3a8 + 43a0� : (4.40)

Last relation implies that the coefficients Æi are:Æ3 = 16 ; Æ8 = 16p3 ; Æ0 � Æ = ÆG = 29 ; (4.41)

and the others can be considered as equal to zero.

4.2.2 Information from �-decay

In hyperon �-decays the hadronic transitions can be described by matrix elements of the

form hBij j�+ jBki where j�+ is the charged hadronic current that couples to the W boson

in the electroweak lagrangian, and Bi are the standard SU(3) labelling for the hyperons

([56]). Generally they are of the form of a Kobayashi-Maskawa matrix element multiplied

by a combination of the vector J i� and axial currents J i5�.

Under the general assumptions that the vector and axial currents transform as an

octet under SU(3)F and are conserved and that the momentum transfer and the mass

differences in the hadronic transitions are negligible, then all the hyperon � decays are

described in terms of two constants F and D defined by the matrix elements:hBj ;PSj J i5� jBk;PSi = 2MBS�(�ifijkF + dijkD) i; j; k = 1; :::; 8 (4.42)

where fijk and dijk are the usual SU(3)F group constants, and they are in App.A.

These matrix elements are the same entering the first moment of g1, so that they can

be used as constraints in the extraction of a0.

By using the standard SU(3) assignments for the baryon octet, one finds, from Eq.

(4.42): a3 = F +Da8 = 1p3(3F �D) : (4.43)

96



4.2. SUM RULES

Decay Informationn! p F +D�! p F + 13D�� ! n F �D�� ! � �q23D�� ! � F � 13D�� ! �0 F +D
Table 4.3: Combinations of constants F and D that enter into some hyperon � decays.
They can be used as constraints on the integrals of quark distributions.

As previously discussed, �1 is a linear combination of a0, a3 and a8. The knowledge ofa3 and a8 can then be used to get information on �1. Table 4.3 shows the combinations ofF and D that are obtained in some hyperon � decays.

4.2.3 The Spin Crisis

As we have shown, one can get information about the quantities a3 and a8 from the study

of hyperon �-decays. By adding this information to the measurement of g1 and of its first

moment, it is then possible to measure a0:a0 = 34 �12�p1 � a3 � 1p3a8� = �� : (4.44)

There are inherent problems in this determination. Measuring the first moment of g1
requires the measurement of g1 over the entire x range, from 0 to 1. The region x ! 1 is

quite harmless, as g1 ! 0 in this limit, but the region x! 0 brings a great uncertainty in

the result, since the error bars are very large and it is very difficult to make measurements

in that region. This means that one can only rely on an extrapolation to the unmeasured

region, and any result will then depend on the form of extrapolation used. The first

experiment to measure �p1 was EMC ([5],[57]), which got the quite astonishing result (see

Fig. 4.4): �p1 = �:126 � 0:010 � 0:015 (EMC) : (4.45)

By using the values in Ref.[58] from hyperon � decay:3F �D = 0:579 � 0:025 ; F +D = 1:2573 � 0:0028 ; (4.46)
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it was obtained: a0 � 0:046 ; (4.47)

which was interpreted as the quark spin content of the nucleon ��, being very small and

consistent with zero.

Of course to get this result they also had to use some information from unpolarized

data experiments, as R from SLAC, and F2 from NMC, for which there are now more

precise measurements. But in any case, it was a striking result, since one would naively

expect a0 � 1, i.e. that the spin of the nucleon is carried mostly by the quarks, and the

result they obtained was surprisingly small. Apart from the experimental accuracy, there

are a few issues that should be taken into consideration when trying to understand the

EMC results: the extrapolation to x! 0 and higher twist effects.

4.2.4 Extrapolation to x! 0
As already stated, any result on �p1 will be very dependent on the assumptions of the

behavior at small x of g1, since it appears to rise to infinity as x approaches zero (it is

to be noted that Fig. 4.4 shows xgp1(x)). An extrapolation is necessary to obtain the be-

havior in the unmeasured regions. The problem is that the literature is full of theoretical

Figure 4.4: The extrapolation to low x done by EMC ([5]). Black points indicate the
measured values of xg1, while the open points are the values of the integral of g1 fromx=1 to the point.
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predictions, that can be very different from each other and yield very different results.

Many experimental analyses ([59],[60]) assumed a nearly constant behavior and ex-

trapolated to the unmeasured region from x ' 10�2 to x=0.

A usual assumption is that of Regge behavior ([61],[62]):

g1(x;Q20)! x��a1 � 0:5 <� �a1 <� 0 (4.48)

where �a1 is the intercept of the degenerate a1(1260), f1(1285), f1(1420) trajectory. The

scale Q20 where the Regge behavior is supposed to start is left completely unrestricted by

Regge arguments.

It has been shown ([63]) that a logarithmic rise at small x could be induced by a

pomeron coupling via vector �:

g1(x)! ln 1x : (4.49)

In Ref. [64] a two-gluon pomeron model is analyzed, leading to a slightly more neg-

ative behavior:

g1(x)! 1 + 2 lnx : (4.50)

By applying negative parity pomeron cuts([65],[66],[67]), another divergent behavior

is obtained:

g1(x;Q20)! 1x ln2 x : (4.51)

Different assumptions in the low x region can lead to very different results, and that

is why more data are needed at lower x.

Also, for many fixed target experiments (including HERMES ) the low x region also

coincides with the low Q2, which makes the interpretation of the results more difficult,

because the contributions of higher twist effects are not negligible anymore, and have

to be included in the analysis. The problem of higher twist was not present in the EMC

data, because of the average Q2 of 17.2 GeV2, but it is certainly not negligible for Q2 � 1
GeV2 region, which includes the low x HERMES region.

4.2.5 The axial anomaly

Even if the extrapolation method may have brought some difference in the results ob-

tained by EMC, thereby changing the total amount of spin carried by the quarks, another
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more profound effect was discovered later, casting a new light on the interpretation of

the moments of g1.

It was shown that it is natural to assume that a0 is the quark content of the nucleon.

As it turns out, the axial current J05� (of which a0 is the matrix element on the nucleon

state) is not conserved, and as such it has an intrinsic dependence on Q2.

Returning to the first moment of g1, it does not receive any direct gluonic contribu-

tion, since there is no gluonic operator of twist 2 and spin n = 1 (see Table 4.2). The gluon

nevertheless gives a contribution to the integral, through the axial anomaly ([68],[69]) .

Let us consider the axial current J0f5� = � f�5 f (4.52)

for quarks of definite flavor f . From the Dirac equation of motion, its covariant derivative

is: D�Jf5� = 2imq � f5 f ; (4.53)

where mq is the quark mass. In the chiral limit mq ! 0 this current seems conserved.

This cannot be the case, since this fact would lead to a symmetry between left and right-

handed quarks, and so to a degeneracy in terms of the parity of the hadron spectrum:

there would be for example, two protons, two neutrons... with two different parities.

There is in fact an anomalous contribution to the covariant derivative, coming from the

triangle diagram in Fig. 4.5:D�Jf5� = �s2�Tr
hG�� ~G��i T  m2qk2 ! ; (4.54)

where the function T (m2q=k2) comes from the calculation of the triangle diagram, k being

the gluon virtuality. The anomaly T is a quite complicated function, with the properties:T  m2qk2 !! 1 for

 m2qk2 !! 0T  m2qk2 !! 0 for

 m2qk2 !!1 : (4.55)

The anomaly introduces an interaction between quarks and gluons in the nucleon through

the triangle diagram. As a consequence the matrix element of the axial current J05� will
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γ
2
γ

5

Figure 4.5: The anomalous contribution.

get contributions not only from the quarks but also from the gluons. Because the func-

tion T only contributes for massless quarks, the contribution that a0 receives from the

additional term is: agluons0 = �nf �s2� Z 10 dx�G(x;Q2)= �nf �s2��G(Q2) ; (4.56)

and the gluons contribute to the first moment of g1 with the additional term:�gluons1;p = �nf9 �s2��G(Q2) ; (4.57)

where nf is the number of active massless flavors.

Although the result in Eq. (4.57) was derived perturbatively, it is believed to be exact

in QCD. The Naive Parton Model result for a0 = �� is then incorrect, and it is, instead:a0 = ��� nf �s2��G : (4.58)

The last result is of fundamental importance, since it implies that the measurement of a

small value for a0 does not necessarily mean that ��, the nucleon’s spin contribution

from the quark helicities, is small. Even if the gluon distribution is multiplied by �s, it

is not negligible in the high Q2 limit, since it will be shown in Eq. (4.73) that it is a finite

quantity over the whole Q2 range.

Also, the result implies that the difference between J05� and the gluonic current K�
that brings the axial anomaly is a conserved current. Its matrix element on a nucleon

state is then a conserved quantity, which is:hPSjJ05� �K� jPSi = 2M ���� nf �s2��G+ nf �s2��G� = 2M �� ; (4.59)
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which is the quark contribution to the spin of the nucleon.

4.2.6 Bjorken Sum Rule

The Bjorken sum rule gives predictions on the difference of the first moments of the

structure functions g1 on the proton and the neutron.

Let us recall Eq. (4.40) for the first moments. The perturbative expansion for E1;i is

([70]): E11;3 = E11;8 = ENS = 1� �s� � 3:58��s� �2 � 20:22��s� �3 + :::E11;0 = ES = 1� 0:333�s� � 1:10��s� �2 + ::: : (4.60)

where the non-singlet and singlet Wilson coefficients ENS and ES (that are equal to 1 to

lowest order in �s) were introduced. In the next section the reason for this nomenclature

will become clear.

The first moment of the neutron structure function gn1 can be obtained by isospin

symmetry, by exchanging u$ d in �p1:�p1 = Z 10 dx gp1(x) = 112 ��a3 + 1p3a8�ENS(Q2) + 43a0ES(Q2)��n1 = Z 10 dx gn1 (x) = 112 ���a3 + 1p3a8�ENS(Q2) + 43a0ES(Q2)� : (4.61)

The terms a0 and a8 come from matrix elements of the operators J05� and J85�, and are

invariant under isotopic spin rotations (see App.A). The current J35�, instead, changes

sign when going from a proton to a neutron matrix element (that is interchanging u withd quarks). The Bjorken sum rule ([71]) follows:Z 10 dx �gp1(x;Q2)� gn1 (x;Q2)� = a36 ENS(Q2) : (4.62)

This sum rule, derived using only current algebra and isospin symmetry (�up = �dn),

has very little model dependence, and is fundamental to QCD.

Another sum rule is the Ellis-Jaffe ([72]) sum rule, which involves the integral of gp1
and gn1 separately, and is derived under SU(3) assumptions and the hypothesis that the

strange quark and sea polarizations are vanishing: �s = ��s = ��q = 0. In Fig. 4.6 the

current situation is shown. It is a plot of the neutron first moment �n1 versus the first
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moment of the proton �p1. The predictions of the Bjorken and Ellis-Jaffe sum rules are

shown in the diagonal band from lower left to upper right in the figure. The data and the

Bjorken sum rule overlap within one sigma, while the Ellis-Jaffe sum rule predictions are

roughly two sigma away from data, showing that the hypothesis of SU(3) and a vanishing

sea polarization can be significantly violated.

nΓ1

pΓ1

0.1 0.2

SMC

0.1

Bjorken Sum Rule

Ellis-Jaffe Sum Rule

Neutron

Deuteron

Proton

-0.1

-0.2

HERMES

E142 E154

SMC

E143

E143

Figure 4.6: World data on the first moment of the neutron versus the first moment of the
proton.

4.3 Q2 evolution of parton distributions

Because g1 depends on �qf , the idea of inverting it to obtain insight into the polarized

distributions is very tempting. This can be done by considering the fact that QCD correc-

tions bring aQ2 dependence into the structure functions, not existing in the Naive Parton

Model. Such a dependence is the result of the interaction among quarks and gluons, and

by studying it, it is possible to extract not only the quark’s contribution to the spin of the

nucleon, but also the gluon’s . In the remaining part of this chapter the framework for the

derivation of the polarized distributions will be presented. This will prove useful when
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in the next chapter the distributions will be obtained using world data on g1, including

the precise new HERMES deuterium data.

4.3.1 Leading order corrections

The parton distributions and the structure functions are independent of Q2 in the Naive

Parton Model where only the qq� vertex of Fig. 4.7 enters into the theory.

γ∗
q

q

Figure 4.7: Zero order diagram in �s:�q ! q.

Beyond the 0th order in �s the dynamical contribution given by the gluons has to be

considered, and the parton distributions acquire a dependence on Q2 x. As shown in Fig.

4.8, the processes that bring this dependence are photon-gluon fusion (�g ! q�q) and gluon

radiation (�q ! gq).

q

+

γ∗
q

g

γ∗

q g

q

Figure 4.8: LO diagrams in �s:�g ! q�q and �q ! gq.

The Q2 dependence of the parton distributions is described by the LO Q2-evolution

(or renormalization group ) equations ([73]):ddt�qNS(x;Q2) = �s(Q2)2� P (0)NS 
�qNSddt � ��(x;Q2)�G(x;Q2) � = �s(Q2)2�  P (0)qq 2nfP (0)qGP (0)Gq P (0)GG !
� ���G �
(4.63)

where nf is the number of active flavors, and�s(Q2) � 4��0 ln Q2�2 (4.64)xIn the following all processes that involve one gluon vertex will be referred to as leading order (LO)
processes, while next-to-leading order (NLO) will refer to those involving two gluon vertices.
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Figure 4.9: Splitting functions.

with �0 = 11� 2nf=3, and � � 0:2 GeV is the energy scale above which the perturbative

approach can be used to describe QCD effects (see App.B).

The splitting functions Pab(x=y) can be interpreted as the probability for a parton

(quark or gluon) a of momentum y to radiate a parton b of momentum x, so that the

initial parton’s momentum is reduced by a fraction x=y (see Fig. 4.9). These functions

can be expanded in �s, so that only their LO expansion P (0)ab enters into the LO evolu-

tion equations. Splitting functions at LO can be found in Ref.[20]. The convolution 
 is

defined as: (P 
 q)(x;Q2) = Z 1x dyy P �xy� q(y;Q2) : (4.65)

The non-singlet (NS) quark distributions are those particular combinations of quark

distributions where the gluons and the quark sea cancel, and for this reason the evolution

equations will not depend on the gluons:�qNS = �u���u; �d���d; (�u+��u)� (�d+��d);(�u+��u) + (�d+��d)� 2(�s+��s); etc. (4.66)

The singlet quark distribution � is instead just�� = (�u+��u) + (�d+��d) + (�s+��s); (4.67)

which can be interpreted as the spin content of the nucleon coming from the quarks. It

has to be noted that �� refers to the sum of all quark and antiquark flavors, and therefore
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there is a factor 2nf in front of P (0)qG in Eq. (4.63). By comparing Eqs.(4.66) and (4.67) with

(4.39) we see that a3 and a8 are non singlet and a0 is a singlet quark distribution.

The inclusion of these diagrams changes also the form of the quark (�q0) and gluon

(�G0) distributions:�q(x;Q2) = �q0(x) + �s2� t ��q0 
 P (0)qq +�G0 
 P (0)qG � ; t = ln�Q2Q20� (4.68)

where �q0 and �G0 denote the unphysical (and unrenormalized) bare parton distribu-

tions, whileQ0 is a reference scale at which the distributions are known (from experiment

or from theory).O(�s) corrections to g1. The leading order discussed so far originated from calculating

the logarithmic O(�s) contributions of the processes �q ! gq and �g ! q�q (Fig. 4.8) to

the zero-th order bare term �q ! q of Fig. 4.7 of g1:

g1(x;Q2) = 12Xq;�q e2q n�q0(x) + �s2� t h�q0 
 P (0)qq +�G0 
 P (0)qG io= 12Xq;�q e2q�q(x;Q2) : (4.69)

As before, t = ln(Q2=Q20). The LO approximation just results in the redefinition of the

quark distributions, without changing the form of g1: in leading order the gluon distri-

bution does not contribute directly to the structure function g1(x;Q2), but only indirectly

via the evolution equations.

LO Q2 behavior of distributions. App.C shows that the formalism of the evolution

equations applies also to the moments of the parton distributions, in what is called the

Mellin space ([74]).

Quantities of great importance are the first moments (n = 1) of the polarized quark

distributions, since they are used to derive sum rules that can be experimentally tested.

The first moments of the splitting functions ([20]) are:P (0)1NS = P (0)1qq = 0P (0)1qG = 0
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4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONSP (0)1Gq = 2P (0)1GG = 112 � nf3 = �02 : (4.70)

By using Eq. (C.3) in App.C we see that the non-singlet sector has no Q2 dependence,

since P (0)nNS = 0. In the singlet sector, instead, we have:ddt � ��(Q2)�G(Q2) � = �s(Q2)2� � 0 02 �02 �� ��(Q20)�G(Q20) � : (4.71)

These equations imply trivially that also �� is Q2 independent:ddt��(Q2) = 0 +O(�2s) ; (4.72)

while they bring the interesting result (obtained by relating �s to �0 through Eq. (4.64)):ddt ��s(Q2)�G(Q2)� = 0 +O(�2s) : (4.73)

Therefore the product�s(Q2)�G behaves more like an object of order�s, although strictly

speaking it refers to a combination that enters only in NLO, and any combination could

be in principle potentially large, irrespective of the value of Q2. From a theoretical point

of view it’s important to stress that the combination �s(Q2)�G becomes Q2 dependent

at NLO, however for practical purposes the Q2 dependence is too small to be able to

distinguish �� and �s(Q2)�G just by examining their Q2 dependence.

4.3.2 Next to Leading Order corrections

In NLO, i.e. beyond the leading logarithmic order, more terms have to be included in

the expression for g1, in part coming from the contribution of the splitting functionsP (1)ij , and in part from the lnQ2-independent terms and from the Wilson coefficients (the

coefficient functions) that are usually introduced in the framework of the OPE. These

quantities have the unpleasant feature that they depend on the regularization scheme

adopted.

The NLO evolution equations are a generalization of the LO ones. The reason is that

the splitting functions P (1)ij have to allow transitions between quarks and antiquarks and

among the different quark flavors, as illustrated in Fig. 4.11{.

107



4.3. Q2 EVOLUTION OF PARTON DISTRIBUTIONS

P
(1)

P
(0)

NLO

LO

Figure 4.10: 1-loop and 2-loop splitting functions.

+ + + +...+

Figure 4.11: Diagrams relevant for the calculation of P (1)ij
The NLO evolution equations are ([75], [76]):ddt�qNS�(x;Q2) = PNS��qNSddt � ��(x;Q2)�G(x;Q2) � = � Pqq 2nfPqGPGq PGG �
� ��(x;Q20)�G(x;Q20) � ; (4.74)

where�s(Q2) � 4��0 ln Q2�2 "1� �1�20 ln ln Q2�2ln Q2�2 # ; �1 = 102 � 38nf3 = 9 for nf = 3 ; (4.75)

and Pij;NS� = �s(Q2)2� P (0)ij;NS +��s(Q2)2� �2 P (1)ij;NS� : (4.76)

In NLO, in contrast to LO, there are two independent NS evolution equations because

of the additional transitions between different, non diagonal flavors (u ! d, u ! s,...)
and q�q mixings (u ! �u). Thus we have in NS+ the combinations �q ���q and in NS�{The splitting functions P (0) and P (1) are often referred to as 1-loop and 2-loop splitting functions. This
comes from borrowing Wilson’s and the OPE language, as can be seen in Fig. 4.10, where it appears clear
how the Compton formalism helps in the calculation of these functions.
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the combinations �q +��q: �qNS+ = �u���u; �d���d�qNS� = (�u+��u)� (�d+��d); (�u+��u) + (�d+��d)� 2(�s+��s) :
NLO corrections to g1. At NLO the splitting functions P (1) have to be included in the

equations for the evolution of the regularized quark distributions. The same applies for

the coefficient functions coming from the OPE, in the expression for g1. These quantities

depend on the regularization scheme adopted. Common choices are the dimensional reg-

ularization and the ’t Hooft-Veltman prescription ([77]) for 5. In D = 4� 2" dimensions

(" being a small parameter) one obtains ([78]):

g1(x;Q2) =12Xq;�q e2q ��q0(x) + �s(Q2)2� �ln�Q2�2 �� 1" + E � ln 4�����q0 
 (P (0)qq + Cq) + �G0 
 (P (0)qG + CG)�i ; (4.77)

where E is the Euler-Mascheroni constant (E ' 0:57721566:::) and the coefficient func-

tions Cq and CG are defined at the end of App.C. In order to get rid of the singularities

one redefines the quark distributions:�q(x;Q2) = �q0(x)+ �s(Q2)2� �ln�Q2�2 �� 1" + E � ln 4����q0 
 P (0)qq +�G0 
 P (0)qG � ;
(4.78)

and a similar expression holds for the redefined gluon distribution. The NLO contribu-

tion to g1 is then:

g1(x;Q2) = 12Xq;�q e2q ��q + �s(Q2)2� Cq 
�q(x;Q2) + �s(Q2)2� 2CG 
�G(x;Q2)� : (4.79)

As we see, the splitting functions P (1) do not enter directly in the expression of g1 at

NLO, but they are implicit in the expression for �G and �q since they evolve according

to the NLO evolution equations.
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In Fig. 4.12 is shown world data on the polarized structure function gp1. In this plot

the Q2 dependence appears quite clear, especially at low x. This can be understood by

considering that the Q2 dependence is an effect of gluons, and gluon emission from a

quark reduces their initial momentum resulting in a lower x.

World Data on gp1(x)
x=0.008 ( x 2048)

x=0.015 ( x 1024)

x=0.025 ( x 512)

x=0.035 ( x 256)

x=0.05 ( x 128)

x=0.08 ( x 64)

x=0.125 ( x 32)

x=0.175 ( x 16)

x=0.25 ( x 8)

x=0.35 ( x 4)

x=0.5 ( x 2)

x=0.75 ( x 1)

Q2 [(GeV/c)2]

g 1 p
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Figure 4.12: World data on gp1 from the experiments E155 ([79]), E143 ([80]), SMC ([44]),
HERMES ([43]) and EMC ([57]).

Scheme Convention. In any realistic analysis beyond LO, the Wilson coefficients Cq;G
and splitting functions are not uniquely determined so that it is a matter of convention

how much of the NLO corrections to attribute to Ci and how much to P (1)i . This is usu-

ally referred to as renormalization/factorization scheme convention ([20]). The important con-

cept is that, to a given perturbative order in �s, any physically directly measurable quantity

(such as g1) must be independent of the convention chosen (scheme independence), and that

the convention dependent terms appear only beyond this order, and are perturbatively

small. App.C shows how Wilson coefficients and splitting functions can be simultane-

ously redefined and thus leave the measurable quantity g1 unchanged.

So, although the parton distributions have no scheme dependence in LO, they do
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depend on the renormalization scheme in NLO and beyond. In the unpolarized case

the most commonly used is the modified minimal subtraction MS. Schemes and parton

densities differ from each other by terms of order �s(Q2), going to zero as Q2 increases.

In the polarized case there are two significant differences.

First, the singlet densities ��(x;Q2) in two different schemes will differ by terms of

the order �s(Q2)�G(x;Q2) ; (4.80)

which appears to be of order �s. But we saw that the first moment �G(Q2) grows as1=�s(Q2), so that the difference of �� in two different schemes could be potentially large.

Second, there are ambiguities in handling the renormalization of operators involving5 in n dimensions, so that the specification MS does not define a unique scheme. There

is actually a whole family ofMS schemes, and strictly speaking each should carry a label

indicating how 5 is treated. The scheme conventionally known as MS ([75], [81]) has

the feature that the nonsinglet densities are conserved, i.e. they are independent of Q2,

corresponding to the conservation of the axial current. The first moment of �� instead, is

not conserved, so that it is difficult to know how to compare the DIS experimental results

on ��, with results from constituent quark models, at low Q2. To avoid these problems

the AB scheme ([82], [83]) was introduced. It involves a modification of the MS scheme:��(x;Q2)AB = ��(x;Q2)MS + nf �s(Q2)2� Z 1x dyy �G(y;Q2)MS�G(x;Q2)AB = �G(x;Q2)MS ; (4.81)

or, in the Mellin momentum space:��(Q2)AB = ��(Q2)MS + nf �s(Q2)2� �G(Q2)MS : (4.82)

In the AB scheme �� is independent of Q2 at all orders. The singlet part of the first

moment of g1 then depends on �� and �G only in the combinationa0(Q2) = ��(Q2)MS = ��(Q2)AB � nf �s(Q2)2� �G(Q2) ; (4.83)

and the unexpected small value found by the EMC experiment can be nicely explained

by a cancellation between �� and the contribution of gluons. For this explanation to be
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correct it is important to have both a positive sign and a large value for the first moment

of the polarized gluon distribution at small Q2 � 1� 10GeV2.
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Chapter 5

Extraction of polarized parton
distributions

5.1 Introduction

In 1998 the SMC collaboration performed a next-to-leading order analysis ([84]) of the

spin structure function g1, including data from CERN, SLAC, DESY and the SMC final

set of data of g1 at low x. The SMC collaboration used two analysis codes, one of which

was calculating the distribution functions in Mellin space and the other was instead using

finite differences to solve the Q2 evolution differential equations.

This chapter shows results for a similar analysis carried out with the finite differences

program used by the SMC collaboration. Some improvements have been made to the

original SMC analysis code, from minor changes such as updates of constants and the

correction of a missing term in the �s routine, to major changes that allow to calculate in

an automatic way the statistical error bands to the obtained fits to distribution functions

and structure functions.

The structure of the code has been described at length in Refs. [85] and [86].

5.2 Experimental Data

Table 5.1 shows the experiments that performed measurements on polarized structure

functions. Also shown are the x and Q2 region they access. The fourth column is the nor-

malization uncertainty quoted by each experiment, which gives the uncertainty related

to luminosity as well as target and beam polarization measurements. For each target type
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Experiment x range Q2 (GeV2) Norm.(%) type # p # d # n
E142[59] 0.035 - 0.466 1.10 - 5.50 3.0 g1 - - 8

g1=F1 - - -A1 - - 28
E143 [93] 0.031 - 0.749 1.27 - 9.52 3.7 g1 28 28 -

g1=F1 82 82 -A1 - - -
E154 0.017 - 0.564 1.20 - 15.0 3.0 g1 - - 17[94]

g1=F1 - - -A1 - - 11[95]
E155 0.015 - 0.750 1.22 - 34.73 7.6 g1 - 24[96] -

g1=F1 24[79] 24[96] -A1 - - -
HERMES 0.028 - 0.660 1.13 - 7.46 3.0 g1 39[43] 39 9[42]

g1=F1 39[43] 39 -A1 - - 9
SMC [44] 0.005 - 0.480 1.30 - 58.0 4.0 g1 12 12 -

g1=F1 - - -A1 10 65 -
EMC [57] 0.015 - 0.466 3.5 - 29.5 9.6 g1 10 - -

g1=F1 - - -A1 10 - -
g1 89 103 34

Total g1=F1 145 145 -A1 20 65 48

Table 5.1: World data on g1, g1=F1, A1. For each experiment the x and Q2 ranges are
reported, together with the normalization uncertainty, the type of quantity measured,
and the number of data points for each given target. The HERMES deuterium data points
are only 39 because the 1 GeV2 Q2 cut removed the first 10 low x points. Square brackets
indicate the published article. The table only includes data obtained directly on the given
target (if for example, gn1 was obtained from gp1 and gd1 then it is not included in this table).
Also, data published exclusively at a lower x and Q2, like in Ref. [97], are not included
in the table, since none of those points is included in the fits.

the quantity reported in the paper is shown (g1, g1=F1 or A1), together with a reference

to the publication and the number of data points.

The quantity most closely related to the measured asymmetry was considered in the

evolution. This means that if an experiment quoted values for g1=F1 and g1, g1=F1 was

preferred to the values on g1. The reason is that each experiment could have different

assumptions on R or F1 or A2, so where possible an attempt was made to use the same

assumptions on the unpolarized quantities R and F1, and on A2. In this way a total of

473 data points was obtained.
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It is generally believed that higher twist effects are certainly non negligible anymore

below Q2 = 1 GeV2, so a cut is placed and data are not accepted below 1 GeV2. In

unpolarized analyses, where the amount of data is much larger, cuts are usually placed

at around 4 GeV2, but polarized experiments have much lower Q2 values, so such a cut

would decrease the number of data points significantly.

5.3 Description of the code

The main theory ideas treated in ch.4 will be briefly summarized, and the main features

of the code explained.

The structure function g1 has a dependence on x and Q2, the latter acquired by dia-

grams involving gluons. It can be expressed as a convolution of the distributions with

coefficient functions C(x;Q2) ([78]):

gp;n1 (x;Q2) = 12 < e2 > Z 1x dyy �C��xy ; �S(Q2)���(y;Q2)+ 2nfCG�xy ; �S(Q2)��G(y;Q2) + Cp;nNS �xy ; �S(Q2)��qp;nNS(y;Q2)�
gd1(x;Q2) = 12 �1� 32!D��gp1(x;Q2) + gn1 (x;Q2)� ; (5.1)

where !D = 0:058 is the D-state wave probability for the deuteron.

The distributions �� and �qp;nNS are defined as:�� = (�u+��u) + (�d+��d) + (�s+��s)�qpNS = 12 �2(�u+��u)� (�d+��d)� (�s+��s)��qnNS = 12 �2(�d+��d)� (�u+��u)� (�s+��s)� : (5.2)

The difference between gp1 and gn1 is in the non-singlet distributions, which differ only for

the exchange of u$ d.

Given measurements of gp;n;d1 at different Q2 values, the distributions �G, �� and�qp;nNS can be singled out by making use of their different Q2 evolution:ddt��(x; t)= �s2� Z 1x dyy �P���xy ; �S(t)���(y; t)+2nfP�G�xy ; �S(t)��G(y; t)�ddt�G(x; t)= �s2� Z 1x dyy �PG��xy ; �S(t)���(y; t) + PGG�xy ; �S(t)��G(y; t)�
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5.3. DESCRIPTION OF THE CODEddt�qp;nNS(x; t)= �s2� Z 1x dyy P p;nNS�xy ; �S(t)��qp;nNS(y; t) : (5.3)

The non-singlet distributions evolve independently from �G since the gluon contribu-

tions cancel in the differences of Eq. (5.2).

The polarized splitting functions at NLO have been calculated in Refs. [75] and [76]

in the MS scheme that is going to be used.

5.3.1 Initial parameterization

The distributions are parameterized at an initial Q2 = Q20. They have to be general

enough to describe the data, and they have to contain a low number of parameters, so

that the available data may well constrain the parameters. A common choice ([84], [87])

consists in a parameterization borrowed from the unpolarized fits ([88]) of the kind:�f(x;Q20) = Nf (�f ; �f ; f ; �f ; �f ) x�f (1� x)�f (1 + fx+ �fx 12 ) �f ; (5.4)

where �f denotes ��, �qpNS , �qnNS or �G. The parameter �f describes the low x be-

havior of the distribution, while �f describes the high x behavior. The coefficients f and�f instead describe the intermediate x region.

The coefficients Nf are chosen to satisfy the relation:Nf (�f ; �f ; f ; �f ; �f )Z 10 dx x�f (1� x)�f (1 + fx+ �fx 12 ) = 1 ; (5.5)

so that �f is the first moment of the distribution at the starting scale:�f = Z dx �f(x;Q20) : (5.6)

This implies that Nf is the expression:N�1f = �1 + f �f + 1�f + �f + 2� �(�f + 1)�(�f + 1)�(�f + �f + 2) + �f � ��f + 32��(�f + 1)� ��f + �f + 52� : (5.7)

5.3.2 Minimization

These parameterizations are then numerically evolved to the measured Q2 of the data

using the evolution equations. The free parameters are evaluated by minimizing the �2,
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5.4. EVALUATION OF BEST PARAMETERS

defined as a sum over the N data points:�2 = NXi=1 hgcalc1 (x; t)� gdata1 (x; t)i2��data(x; t)�2 (5.8)

and the errors �data are only statistical. The minimization is performed by the MINUIT

program, described in Ref.[89].

5.4 Evaluation of best parameters

The distributions described in Eq. (5.4) have as many as 16 parameters, but some of them

can be fixed by symmetry considerations.

The normalizations of the non-singlet distributions can be fixed imposing SU(3) sym-

metry. The proton and neutron NS distributions are related to the combinations of parton

distributions a3 and a8 by the relation (independent of Q2):�qp;nNS = �34a3 + p34 a8 ; (5.9)

where ([90],[91]): a3 = gAgV = F +D = 1:2601 � 0:0025a8 = 1p3(3F �D) = 1p3(0:579 � 0:025) (5.10)

which gives �pNS = 1:090 � 0:007 ; �nNS = �0:8003 � 0:007 : (5.11)

It was shown in Ref. [92] that SU(3) also constrains the high-x coefficient in the gluon

parameterization to be equal to 4, so it was set to this value.

The analysis code has been run first by varying the mid-x coefficients  and �, but no

sensitivity was found for them for all the distributions except the singlet. So �, p;nNS were

set to zero, and the same for the � coefficients, in agreement with the SMC publication.

In this way the total number of free parameters is reduced to 10.

Table 5.2 shows the resulting best parameters from the QCD fit. With respect to the

values published in the paper by the SMC collaboration in Ref.[84], the errors are in many
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cases one order of magnitude smaller. The gluon appears also much better constrained:

the gluon coefficients of table 5.2 can be compared to the ones in Ref.[84] which are �G =0:33+2:05�1:05 and �G = 0:25+0:29�0:22. � -0.5173 � 0.0030�� � 2.643 � 0.040� 0.248 � 0.020 -10.664 � 0.072� -0.517 � 0.022�qpNS � 2.95 � 0.27� 1.090 0.� 0.935 � 0.138�qnNS � 3.48 � 0.36� -0.8003 0.� 1.337 � 0.957�G � 4.0� 0.140 � 0.136 0.�2/NDF=539.95/463=1.17

Table 5.2: Best fit parameter values and their statistical uncertainty at the input scaleQ2 = 1 GeV2. The parameters with no error have been set to the values shown. The �
coefficients, being all zero, are not shown in this table. The singlet distribution is very
well constrained by data, while the gluon one has large uncertainties.

5.5 Statistical Error Bands

After the best fit has been found, each distribution is known in terms of parameters enter-

ing into the parameterization at the initial Q2, and their errors, giving the 68% probability

that a parameter is within the range given by the error. It is a common procedure ([87],

[99]) to perform fits to structure functions and quote only the best values and the errors of

the parameters, without showing how these affect the error on the distributions. This sec-

tion will be devoted to the calculation of the statistical error bands, and it will be shown

how they can be obtained in a straightforward way for both distributions and structure

functions, at any Q2 value.
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The expression for the error of a distribution f is given by:(�f )2(x;Q2) =Xi;j dfdpi (x;Q2) dfdpj (x;Q2)cov(pi; pj) ; (5.12)

where pi and pj are the parameters on which f depends. The analytic form of the distri-

butions is only known at the initial Q2 = Q20, in the form of Eq. (5.4), so that only at Q20 it

is possible to calculate analytically the errors on the distributions. To calculate dfdpi (x;Q2),
an expression for the Q2 evolution of the derivatives of each distribution with respect to

each one of the parameters entering in the initial parameterizations has to be found. In

the following it will be assumed that the covariance matrix has no dependence on Q2.

In a simplified notation, where all the � symbols indicating the polarizations have

been dropped, and the splitting functions have been denoted with Pi, i = 1; ::; 5, the

evolution equations take the form:ddtqNS = P1 
 qNSddt� = P2 
 �+ P3 
GddtG = P4 
 �+ P5 
G ; (5.13)

At any Q2 value the non-singlet distributions only depend on their own initial parame-

ters and do not depend on the ones entering the initial parameterization of �, G, or the

other NS distribution, since they are completely decoupled from them in the evolution

equations (5.13). Singlet and gluon distributions instead depend on each other because

of their evolution, so that to find the evolution of their derivatives will be a more compli-

cated matter. For this reason the NS case will be considered first.

Non-singlet case. If pi is one of the parameters �NS , �NS , �NS , NS , �NS , then by ap-

plying the first derivative with respect to pi to the first equation in (5.13), one gets:ddpi ddtqNS = ddpiP1 
 qNS ; (5.14)

and, by exchanging the order of derivative:ddt � ddpi qNS� = P1 
� ddpi qNS� ; (5.15)
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5.5. STATISTICAL ERROR BANDS

so that the derivatives of the NS distributions evolve according to the same equations as

the distributions. When performing the Q2 evolution, the initial values will be given byddpi qNS(x;Q20), whose analytical form will be shown later.

Gluon and singlet case. Let us now consider the evolution of the derivatives of G and� with respect to one of the parameters entering the initial distribution of �, say �i. By

interchanging the order of the derivatives, one gets:ddt d�d�i = P2 
 d�d�i + P3 
 dGd�iddt dGd�i = P4 
 d�d�i + P5 
 dGd�i ; (5.16)

which shows that d�=d�i evolves together with dG=d�i, and they cannot be separated

in the evolution.

To numerically evaluate these distributions one has to provide the initial values. The

initial parameterization of d�=d�i is known, since the parameters have been calculated.

The distribution dG=d�i is zero at the initial Q2, since �i only enters in the parameteri-

zation of �. To properly evaluate the evolution of a derivative of � (or G) one then has

to evolve it with the other distribution set to zero at the starting Q2.

Once the derivatives of each distribution with respect to the parameters it depends on

are evaluated at the Q2 value of interest, the errors � on the distributions are calculated

as: (��)2 =Xi;j � d�d�i d�d�j cov(�i;�j) + d�d�i d�dGj cov(�i; Gj) + d�dGi d�dGj cov(Gi; Gj)�(�G)2 =Xi;j � dGd�i dGd�j cov(�i;�j) + dGd�i dGdGj cov(�i; Gj) + dGdGi dGdGj cov(Gi; Gj)�(�qp;nNS)2 =Xi;j �dqp;nNSdpi dqp;nNSdpj cov(pi; pj)� : (5.17)

The expressions for the derivatives of the distributions are quite lengthy but simplify

considerably in the case of � = 0. The complete forms will nevertheless be reported.

Given an initial parameterization with the form of Eq. (5.4), the derivatives with respect
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5.5. STATISTICAL ERROR BANDS

to each parameter are:d�fd� = Nf �x� (1� x)� (1 + x+ �px) lnx�Nf dN�1fd� !d�fd� = Nf �x� (1� x)� (1 + x+ �px) ln(1� x)�Nf dN�1fd� !d�fd� = Nf x� (1� x)� (1 + x+ �px) = �f�d�fd = Nf � x� (1� x)�  x�Nf dN�1fd !d�fd� = Nf � x� (1� x)�  px�Nf dN�1fd� ! ; (5.18)

where the subscripts f in the parameters �, �,  and � have been dropped for simplicity,

and:Nf dN�1fd� = �(�+ 1)� ��+ � + 52�D(�+ � + 2) �� [(� + 1) + (�+ � + 2)(� + � + 2 + (�+ 1))( (� + 1)�  (�+ � + 2))℄ ++ 1D�(� + � + 2)2���+ 32��(�+ � + 2)� ��+ 32��  ��+ � + 52��Nf dN�1fd� = �(�+ 1)� ��+ � + 52�D(�+ � + 2) �� [�(�+ 1) + (�+ � + 2)(� + � + 2 + (�+ 1))( (� + 1)�  (� + � + 2))℄ ++ 1D�(� + � + 2)2���+ 32��(�+ � + 2)� (� + 1)�  ��+ � + 52��Nf dN�1fd = 1D (�+ 1)�(�+ 1)���+ � + 52�Nf dN�1fd� = 1D (�+ � + 2)���+ 32��(�+ � + 2)D = (�+ � + 2 + (�+ 1)) �(�+ 1)���+ � + 52�++ �(�+ � + 2)���+ 32��(�+ � + 2) ; (5.19)

with  (x) = ddx ln�(x). These quantities constitute the initial parameterizations in the

calculation of the statistical error bands.

Results for the four combinations of polarized parton distributions are shown in Fig.

5.1, for different Q2 values of 1, 4, 25 and 60 GeV2. Each polarized distributions f must
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Figure 5.1: Central values and statistical error bands for x�qp;nNS(x;Q2), x��(x;Q2) andx�G(x;Q2), for the Q2 values 1, 4, 25 and 60 GeV2. The plots are superposed with the
MRST2001 ([100], straight lines) and CTEQ6 ([101], dotted line), fits to unpolarized world
data, which constitutes an upper limit to be satisfied by the polarized distributions. The
two unpolarized parameterizations cannot be distinguished for the quark plots.

obey the positivity limit j�f j � f ; (5.20)

where f is the unpolarized distribution. In Fig. 5.1 the obtained polarized distributions

are compared to the latest unpolarized MRST ([100]) and CTEQ ([101]) parameteriza-

tions, and it appears clear that these limits are well respected. These two unpolarized

parameterizations are in agreement in the small x region shown in the plots, for all dis-

tributions except for the gluon, where they differ slightly.

The quark distributions appear to be very well determined by data, but the gluon
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distribution has still large uncertainties. Even within the large uncertainties, it is possible

to see that the gluon distribution has a clear positive sign, becoming more definite at

increasing Q2 values.

The Q2 behaviour of the distributions can be understood with the following reason-

ing. At small Q2 the resolving power of the virtual photon is low, so it is not able to

discriminate between a parton with momentum x and the system of a parton with lower

momentum y plus an emitted gluon: the virtual photon will assign a momentum x to

the system. At higher Q2 the resolving power increases, and the virtual photon is able to

discriminate among different kinds of partons. The distribution of partons at small x in-

creases, since more partons carry smaller momentum fraction, and decrease at high x for

the same reason. This is also the reason why unpolarized structure functions decrease

at high x for increasing Q2, and increase at small x. In the case of polarized structure

functions, which describe spin, this reasoning still holds, and it is confirmed by data: the

extracted quark polarized distributions have indeed a decreasing behaviour at high x
with increasing Q2. The gluon contribution instead increases with Q2 since at higher Q2
the photon is able to discriminate gluon-initiated processes.

Once the distributions are known, it is possible to evaluate gp1, gd1, gn1 , using Eq. (5.1).

The statistical error can be obtained in a similar way as for the distributions:�2(g1) =Xi;j �g1�pi �g1�pj cov(pi; pj) (5.21)

where now the sum is over all possible parameters pi and pj , including cross terms of

gluon with NS, and singlet with NS. The results are shown in Figs.5.2, 5.3 and 5.4 for the

four reference Q2 values.

5.6 Systematic errors

Fig. 5.1 shows the statistical error bars alone, obtained by propagating the statistical

errors on the measured gp;n;d1 values to the distributions. The measured values on the

structure functions also have systematic errors, which should be propagated too. The

procedure used to obtain the systematic bands consists in shifting the data points for

each experimental data set by ��syst, while leaving the data from the other experiments
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Figure 5.2: Central values and statistical error bands for xgp1 for Q2 values of 1, 4, 25 and
60 GeV2. The bands are superposed with the data in each energy range.

at their central values, and looking at how the polarized distributions change. Since 12

data sets have been used, this means that 24 �2 minima have to be obtained. In this way

the extreme values for the change in the distributions are obtained: the real central value

will be within the systematic band thus obtained.

Some less precise experiments, like EMC, have very large systematic errors. Special

attention has to be paid when shifting their central values, since this could be interpreted

by the fitting routine as a high Q2 dependence. For this reason the shifted data were

weighted by the sum in quadrature of statistical and systematic errors, in the fitting pro-
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Figure 5.3: Central values and statistical error bands for xgd1 for Q2 values of 1, 4, 25 and
60 GeV2. The bands are superposed with the data in each energy range.

cedure, to give them a lower weight.

Fig. 5.5 shows the bands within which the polarized distributions are contained when

shifting the g1 central values. Whenever the fits exceeded the unpolarized limit (shown

in the figure) the bands were cut to respect such a limit. This could not be done for the

points at 1 GeV2, where no MRST2001 or CTEQ6 fits to unpolarized distributions are

available.

Fig. 5.6 shows the final results for the fits to the polarized distributions �qp;nNS(x;Q2),��(x;Q2) and �G(x;Q2) for the reference values of 1, 4, 25 and 60 GeV2, in the range
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Figure 5.4: Central values and statistical error bands for xgn1 for Q2 values of 1, 4, 25 and
60 GeV2. The bands are superposed with the data in each energy range.

0.0007 � x � 0.93, including statistical and systematic errors. The smaller error bands are

the statistical errors, while the larger bands are the total errors �tot(x;Q2), calculated as

the sum in quadrature of the statistical and systematic errors:�tot(x;Q2) =q�2stat(x;Q2) + �2syst(x;Q2) : (5.22)

Singlet and non-singlet distributions are very well constrained by data, but large uncer-

tainties still remain in the gluon sector. The gluon distribution is consistent with zero at

the starting scale of 1 GeV2, gaining a definite positive sign at increasing Q2.
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Figure 5.5: Central values and systematic error bands for Q2 values of 1, 4, 25 and 60
GeV2. The bands are superposed with MRST20011 (full lines) and CTEQ6 (dotted lines)
fits to unpolarized world data, which constitutes a limit to be satisfied by the polarized
distributions. A cut was applied to distributions that are exceeding the unpolarized limit.

5.7 Integrals

As discussed in ch.4, interesting quantities are the integrals of polarized parton distribu-

tions over the variable x. The polarized structure functions and distributions have thus

been integrated over the range 0:0007 � x � 0:93. The results are in Table 5.3, where

statistical and systematic errors are shown. The error for each integral was obtained as

the area between the best fit and the best fit plus or minus the errors. The error obtained

from the statistical band is symmetric, while this is not the case for the areas of Fig. 5.5,

so asymmetric systematic errors are obtained.
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Figure 5.6: Final results for the fits of x�qpNS , x�qnNS , x�� and x�G for Q2 reference
values of 1, 4, 25 and 60 GeV2. The fits are superposed with the statistical errors given by
the internal band and the sum in quadrature of statistical and systematic errors given by
the external band.

Integrals of gp;d;n1 (x;Q2) have been calculated in different x ranges to compare them

with published values, and such a comparison is reported in table 5.4, where only statis-

tical errors are shown, in both published values and from this analysis. The fact that the

errors obtained from the fit are in many cases larger than previously published ones does

not lead to the conclusion that the fit does not represent an improvement with respect to

the past. Results reported from other papers were obtained directly from integrating g1
data on the measured x range from each experiment. The data points within each exper-

iment are at different Q2, and an ansatz has to be used in order to evolve the points to a

common Q2 value in order to be able to perform the integration. It is usually assumed

128



5.7. INTEGRALSQ2 (GeV2)

Z 0:930:0007 dx �qpNS(x;Q2) Z 0:930:0007 dx �qnNS(x;Q2)
1 1.021 � 0.048 +0:072�0:085 -0.802 � 0.044 +0:043�0:045
4 1.003 � 0.043 +0:066�0:079 -0.800 � 0.036 +0:055�0:026

25 0.987 � 0.040 +0:060�0:075 -0.799 � 0.031 +0:047�0:023
60 0.982 � 0.039 +0:057�0:074 -0.798 � 0.030 +0:045�0:023Z 0:930:0007 dx ��(x;Q2) Z 0:930:0007 dx �G(x;Q2)
1 0.309 � 0.088 +0:049�0:068 0.140 � 0.157 +0:282�0:109
4 0.310 � 0.073 +0:058�0:095 0.327 � 0.199 +0:387�0:164

25 0.318 � 0.069 +0:076�0:102 0.533 � 0.248 +0:512�0:218
60 0.324 � 0.070 +0:084�0:105 0.613 � 0.265 +0:556�0:238Z 0:930:0007 dx gp1(x;Q2) Z 0:930:0007 dx gd1(x;Q2) Z 0:930:0007 dx gn1 (x;Q2)
1 0.125 � 0.009 0.040 � 0.008 -0.046 � 0.009

4 0.131 � 0.009 0.042 � 0.008 -0.048 � 0.008

25 0.135 � 0.009 0.043 � 0.008 -0.049 � 0.008

60 0.136 � 0.009 0.043 � 0.008 -0.049 � 0.008

Table 5.3: Top: integrals of polarized parton distributions �qpNS , �qnNS , �� and �G over
the measured range 0:0007 � x � 0:93. First quoted errors are statistical while second are

systematic. Bottom: integrals of gp;d;n1 over the same x range. Errors are statistical only.

that the ratio g1(x;Q2)=F1(x;Q2) does not depend onQ2, as world data suggest. By using

a parameterization for F1 obtained from world data, the values for g1 at a differentQ2 can

be obtained, making it possible to perform the integration. Results obtained in this way

are more precise than those obtained from a QCD fit, since the purpose of the fit is also to

accomodate data from different targets and experiments in a model valid over a wide Q2
and x range, and to extract additional information such as the parton distributions. It is

then understandable that precision may be lost in the process. It is then impressive that

in many cases the precision of the integrals from the fit is comparable if not better than

the results obtained from g1 data alone.
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5.7. INTEGRALSx Range Exp. Q2 Integral Ref.

Proton

0.003 � x � 0.8 SMC 5 0.130 � 0.003 [84]
T.A. 4 0.129 � 0.008

E143 3 0.121 � 0.003 [93]
0.03 � x � 0.8 E143 5 0.117 � 0.003 [93]

T.A. 4 0.115 � 0.007

0.021� x � 0.85 HERMES 2.5 0.122 � 0.003 [43]
T.A. 4 0.119 � 0.007

Deuteron

0.003 � x � 0.8 SMC 5 0.036 � 0.004 [84]
T.A. 4 0.044 � 0.007

E143 3 0.046 � 0.003 [93]
0.03 � x � 0.8 E143 5 0.043 � 0.003 [93]

T.A. 4 0.048 � 0.006

Neutron

0.003 � x � 0.8 SMC 5 -0.054 � 0.007 [84]
T.A. 4 -0.041 � 0.008

E143 3 -0.023 � 0.008 [93]
0.03 � x � 0.8 E143 5 -0.025 � 0.007 [93]

T.A. 4 -0.019 � 0.006

0.023� x � 0.6 HERMES 2.5 -0.034 � 0.013 [42]
T.A. 4 -0.024 � 0.006

0.03� x � 0.6 E142 2 -0.028 � 0.006 [59]
T.A. 1 -0.021 � 0.006
T.A. 4 -0.024 � 0.006

Table 5.4: Comparison of integrals
R dx gp;d;n1 (x;Q2) from other experiments and from

this analysis (T.A.). The first column indicates the x range of integration, the second the
experimental collaboration author of the analysis, the third is theQ2 at which the integral
is calculated. The fourth column gives the integral with its statistical error alone, and the
fifth gives the reference to the article where the result is published. The results from this
analysis are in good agreement with older results, having, in some cases, also smaller
statistical errors.

Integrals from new HERMES gd1 data. The results obtained in ch.3 can be used to ob-

tain experimental values for the integral of gd1 over the measured x range, in a more pre-

cise way than from the fits. Under the hypothesis that gd1(x;Q2)=Fd1(x;Q2) is independent

of Q2, the value of gd1(x;Q2
ref

) at a reference Q2 value Q2
ref

is given by:

gd1(x;Q2
meas)

Fd1(x;Q2
meas)Fd1(x;Q2

ref) ; (5.23)
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5.7. INTEGRALS

where the fifteen parameter fit for Fd1 was used, introduced in ch.3. For a given x bin, up

to three Q2 bins exist. The gd1 values have first been obtained in the 49 bins at the sameQ2
ref

and then a weighted average has been performed over the different Q2 bins that

belong to the same x bin. The integral I has been calculated asI = Z 0:850:0021 dx gd1(x;Q2
ref) = 49Xi=1 (xi+1 � xi)gd1(< x >i; Q2

ref) ; (5.24)

and the statistical error as:�2I = 49Xi=1 (xi+1 � xi)2 �2(gd1(< x >i; Q2
ref)); (5.25)

where < x >i is the average x in the i-th bin, with x values contained between xi andxi+1.

Given the systematic error of gd1=Fd1 in an x bin, the systematic error at Q2
ref

has been

obtained in the same way as the value of gd1, i.e. according to Eq. (5.23). The values

belonging to the same x bin have been averaged using a weighted average with weights

given by the inverse squared of the statistical errors in each Q2 bin. To obtain the sys-

tematic error on the integral, the values of gd1 have been shifted by the systematic error in

each x bin and I recalculated.

The values obtained for the integral of gd1 over the measured x range are in table 5.5

and they are in very good agreement with the values of table 5.4 (the SMC results have

a similar x range). The statistical errors, as previously discussed, are smaller than the

ones obtained from the fits. The systematic errors are of the same order of magnitude as

previous publications. Q2
ref

(GeV2)
R 0:850:0021 dx gd1(x;Q2

ref
)

1 0.0400 � 0.0018 � 0.0052
4 0.0400 � 0.0023 � 0.0040
5 0.0398 � 0.0024 � 0.0036

Table 5.5: Integrals of gd1 over the measured x range for different Q2
ref

values, calculated

from the new HERMES data alone. The first error is statistical and the second is system-
atic.
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5.8. CONCLUSIONS

5.8 Conclusions

Fits to world data on the structure function g1 for the extraction of polarized parton dis-

tributions describe the data well, and are able to provide good insight into the polarized

distributions. The gluon polarization shows a definite positive sign explaining, at least

in part, the spin puzzle.

The problem still remains that the fitting procedure is only valid in the kinematic x,Q2 range of data, so that the fits cannot be trusted at lower x or higher Q2 than exist-

ing data. This makes it difficult to give predictions on the behavior of the integrals of

structure functions or polarized distributions over the whole x range between 0 and 1.

However, even if one decides to trust the fits, and calculates the integrals from the fitted

distributions over the whole range of x, the fact has to be taken into account that the

errors on the distributions, and especially on the gluons, blow up at low x (note that the

plots shown in this chapter are x times the distributions). This brings a large uncertainty

in the estimation of the integral. More data is needed at lower x to be able to constrain the

gluons before an integral of �G can provide an indication as to whether or not the spin

puzzle has been solved. One could also try to get an estimate of the possible behavior

of the structure functions at lower x by using theoretical predictions as those discussed

in section 4.2.4; however as this thesis is mainly focused on the impact of data on the

precision of the extraction of the polarised parton distributions, this would go beyond its

scope.

There are nevertheless still some ways the fits could be improved with existing data,

and are discussed here briefly.

Quality of data. The deuterium HERMES data used from the 1998 and 2000 production

is missing the smearing corrections, coming from the finite resolution of the spectrome-

ter. They have to be determined by a Monte Carlo simulation, and they are expected to

contribute a 2-3% of gd1, but mostly at low x.

Normalizations. Each data set from each experiment has an intrinsic normalization un-

certainty, coming from the uncertainties on target and beam polarizations, and on the

luminosity measurement. This means that each data set should be properly normalized.
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This can only be done in a comparison with other data sets, and usually by the inclusion

of an additional term into the �2 definition [102]:�2 = �2data + Xexpts Ni � 1�N (5.26)

where �N is the normalization uncertainty quoted by the experiment, and Ni is a set of

additional parameters to be inserted in the �2 definition at the beginning of the study.

The minimization will provide a best value for the normalizations, that are then fixed for

the fit.

Higher twist effects. Data at Q2 < 4 GeV2 are usually rejected in unpolarized analyses,

because higher twist (non-perturbative) effects start having an important role. This is

not yet possible to do in the polarized case because it would mean the loss of a large

amount of data that is necessary to constrain the distributions at small x, since the smallQ2 region corresponds for fixed target experiments also to the small x region. In the

absence of a clear theoretical calculation, alternatively these effects can be parameterized

by the introduction of a Q2 dependence in addition to the lower twist (LT) structure

function of the form

gHT1 (x;Q2) = gLT1 (x;Q2)� �1 + f(x)Q2 � (5.27)

where gHT1 (x;Q2) describes the higher twist form of the structure function and f(x) is

parameterized as a polynomial in x whose coefficients have to be determined from data.

Recent studies ([102]) have shown that the application of these corrections affects the fits

only at small x but still it is consistent with a simple NLO calculation, within the precision

of the error bars.
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Chapter 6

Conclusions

The most precise measurement yet made of the deuteron structure function gd1 has been

performed with almost 10 million DIS events collected by the HERMES experiment. Data

covered the scattered lepton kinematic range 0:0041 < x < 0:81 and 0:21 < Q2 < 7:3
GeV2.

The results were used in combination with world data on gp1, gd1 and gn1 , some of which

collected by HERMES in previous years, to extract the polarized parton distributions�qp;nNS(x;Q2), ��(x;Q2) and �G(x;Q2). The method used the fact that each distribution

has a differentQ2 dependence. Data collected at differentQ2 values can be used to extract

these distributions. Both statistical and systematic errors on the measured g1 values were

propagated into the polarized distributions. A full treatment of statistical errors was

developed, allowing the calculation of statistical error bands at anyQ2 value, and not only

at the initial Q20, where the analytical parameterization is known. The quark distributions

are very well determined, and the resulting gluon distribution has a definite positive sign

and increases with Q2.

Integrals for the distributions and the structure functions were obtained from the fits

in the range 0:0007 < x < 0:93 and are in agreement with previous calculations ([84]).

The integral of gd1 has also been calculated over the measured x range, using HERMES

data alone, obtaining a great improvement with respect to previously published results.

Although the measurement shown in this thesis is extremely precise, it does not cover

the whole x range of g1, and data are still needed especially at lower values of x and

higher Q2, where non-perturbative contributions can be safely neglected.
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The model in which the total spin of the nucleon is carried only by quarks is no longer

valid, as the pioneering EMC experiment showed. Nowadays the small EMC result is in-

terpreted as the difference of quark and gluon spin, meaning that the quarks could still

carry a significant portion of the nucleon’s polarization, but at the same time also the glu-

ons do. The results in this thesis are a clear indication that gluon polarization is positive,

at least in the x, Q2 range of measured data, supporting such an interpretation. As the

total contribution of each distribution to the nucleon’s spin involves an integral over x,

which cannot be performed given the limited x range, these results are only indicative

that the spin crisis no longer exists and that the real problem is now to get more data to

cover a larger kinematic range and measure the gluon distribution more precisely.

Future measurements of longitudinally polarized parton distributions will be done

mostly at RHIC, HERA, and CERN.

RHIC (at the Brookhaven National Laboratory) has a spin program that consists in

producing polarized beams of protons, with the main goal of measuring �G through~p � ~p scattering. The main channel will be direct photon production. At tree level the

direct photon can be produced by Compton scattering qg ! q and by quark-antiquark

annihilation q�q ! g, and, since the antiquark distribution inside the proton is small, the

process is dominated by Compton scattering. In this way the gluon distribution inside

the proton can be directly probed, by identifying photons with high transverse momen-

tum. RHIC measurements are expected to provide one of the cleanest, and at lower x,

measurements of �G of any existing experiments (see Fig. 6.1).

Proton-proton collisions at RHIC will also be used to produceW� bosons ([11]), orig-

inating from the interaction of u �d or �ud quarks in the proton which subsequently decay

into charged leptons and can provide information on the ratios �u=u and ��d= �d fromW+
and on ��u=�u and �d=d from W� ([104]).

The gluon distribution can be easily measured in processes where the gluon enters

directly, like photon-gluon fusion (�g ! q�q). In this process the q�q pair creates two

hadron jets, or at lower energies, single hadron pairs, with opposite large transverse

momentum. Up to now, a single data point was obtained by the HERMES experiment

([105]) with a similar analysis, using high transverse momentum hadron pairs, indicating

a positive gluon polarization �G=G = 0:41 � 0:18 � 0:03 at an average < x >= 0:17 (see
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Fig.6.1).

The COMPASS experiment was built at CERN with the goal of measuring the gluon

polarization. Polarized muon beams are produced by pion decays, and their high energy

(' 200 GeV) makes it possible to reach low x regions (x < 0.01). COMPASS is explor-

ing the possibility to measure the gluon polarization through open charm events. The

contribution coming from the charm quark to the structure function g1 ([106]) can be ex-

pressed as a convolution of a known function and the gluon distribution. Given the x
dependence of g1, this can be de-convoluted to extract �G. The large acceptance of the

detector and its full particle identification will allow a large sample of charmed particles

to be collected.

Fig. 6.1 shows projections for the statistical accuracy of the COMPASS and RHIC

results, compared to the projected accuracy of the HERMES result, and the x range for

each experiment. According to expectations, the results from COMPASS and RHIC will

be able to discriminate among different models for the gluon polarizations.

New and exciting results will come from these experiments, that will probably shed

more light on the mystery of the nucleon spin. The future of spin physics is starting

now.....so fasten your seat belts and enjoy the ride!

xgluon

∆G
/G

HERMES pairs of high pT hadrons 1996-2000 projected
COMPASS pairs of high pT hadrons 2.0 fb-1 at 200 GeV
STAR at RHIC direct photon + jet 320 pb-1 at √s
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Figure 6.1: Projection for statistical accuracies of HERMES, COMPASS and RHIC spin
physics experiments, superposed to three different QCD leading-order models for �G atQ2 =10 GeV2. The plot is based on projections shown in Ref. [107].

136



Bibliography

[1] F. Halzen and A.D. Martin, Quarks and Leptons: An Introductory Course in Modern
Particle Physics, John Wiley & Sons, New York, 1984.

[2] H1 Collaboration, C. Adloff et al., Eur. Phys. J. C21 (2001) 33.

[3] ZEUS Collaboration, J. Breitweg et al., Phys. Lett. B487 (2000) 53.

[4] R.G. Roberts, The structure of the proton, Cambridge University Press, 1990.

[5] EMC Collaboration, J. Ashman et al., Phys. Lett. B206 (1988) 364.

[6] HERMES Collaboration, K. Ackerstaff et al., Nuc. Instr. Meth. A417 (1998) 230.

[7] HERMES Collaboration, K. Ackerstaff et al., Phys. Lett. B464 (1999) 123.

[8] SMC Collaboration, B. Adeva et al., Phys. Lett. B369 (1996) 93.

[9] SMC Collaboration, B. Adeva et al., Phys. Lett. B420 (1998) 180.

[10] M. Beckman, Proceedings from the Workshop on Testing QCD through Spin Observables
in Nuclear Targets, University of Virginia, Charlottesville, Virginia, USA, Apr 18 - 20,
2002.

[11] B. Bourrely and J. Soffer, Nucl. Phys. B445 (1995) 341.

[12] T. Benisch et al., Nucl. Instr. Meth. A471 (2001) 314.

[13] A. Solokov, I. Ternov, Sov. Phys. Doklady 8 (1964) 1203.

[14] M. Beckmann et al., Nucl. Instr. Meth. A479/2-3 (2002) 334.

[15] F. Menden, MSc. thesis, HERMES internal note 98/001.

[16] J. Wendland, MSc. thesis, HERMES internal note 99/016.

[17] J. Wendland, HERMES internal note 01/067.

[18] L. De Nardo, HERMES internal note 01/005.

[19] T. Ernst, PhD thesis, University of Freiburg, 1985.

[20] B. Lampe and E. Reya, Phys. Rept. 332 (2000) 1.

[21] M. Anselmino, A. Efremov and E. Leader, Phys. Rept. 261 (1995) 1.

137



BIBLIOGRAPHY

[22] D.F. Geesaman, S. Saito and A.W. Thomas, Ann. Rev. Nucl. Part. Sci. 45 (1995) 337.

[23] M. Lacombe et al., Phys. Lett. B101 (1981) 139.

[24] NMC Collaboration, P. Amaudruz et al., Nucl. Phys. B371 (1992) 3.

[25] NMC Collaboration, P. Amaudruz et al., Phys. Lett. B364 (1995) 107.

[26] L.W. Whitlow, S. Rock, A. Bodek, E.M. Riordan and S.Dasu, Phys.Lett. B250 (1990)
193.

[27] L.W. Whitlow, PhD thesis, SLAC report 357.

[28] E155 Collaboration, P. L. Anthony et al., hep-ex/0204028.

[29] SMC Collaboration, B. Adeva et al., Phys. Lett. B302 (1993) 533.

[30] E143 Collaboration, K. Abe et al., Phys. Rev. Lett. B76 (1996) 587.

[31] E155 Collaboration, P. L. Anthony et al., Phys. Lett. B458 (1999) 529.

[32] M. Stratmann, Z. Phys. C60 (1993) 763.

[33] X. Song, Phys. Rev. D54 (1996) 1995.

[34] H. Weigel and L. Gamberg, Nucl. Phys. A680 (2000) 48.

[35] M. Wakamatsu, Phys. Lett. B487 (2000) 118.

[36] H. Böttcher, Y. Gärber and U. Stößlein, HERMES internal note 99/053.
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Appendix A

SU(3)

SU(3) is the set of unitary 3x3 U matrices with detU=1. The fundamental representation

of the SU(3) group is given by the matricesU = e 12�i!i (A.1)

where !i are eight real parameters, and �i are called Gell-Mann matrices. They are the

generators of this group, and there are 32-1=8 linearly dependent traceless hermitian 3x3

matrices ([1]):�i = � �i 00 0 � with i = 1; 2; 3 ; �4 = 0� 0 0 10 0 01 0 0 1A ; �5 = 0� 0 0 �i0 0 0i 0 0 1A
�6 = 0� 0 0 00 0 10 1 0 1A ; �7 =0� 0 0 00 0 �i0 i 0 1A ; �8 = 1p3 0� 1 0 00 1 00 0 �2 1A ; (A.2)

with the Pauli spin matrices�1 = � 0 11 0 � ; �2 = � 0 �ii 0 � ; �3 = � 1 00 �1 � : (A.3)

The Gell-Mann matrices satisfy the relations:[�i;�j ℄ = 2ifijk�kf�i;�jg = 43Æij + 2dijk�k (A.4)

where fijk are fully antisymmetric under the interchange of any pair of indices, and dijk
are fully symmetric. Also:
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i j k dijk i j k fijk
1 1 8 1=p3 1 2 3 1
1 4 6 1/2 1 4 7 1/2
1 5 7 1/2 1 5 6 -1/2

2 2 8 1=p3 2 4 6 1/2
2 4 7 -1/2 2 5 7 1/2
2 5 6 1/2 3 4 5 1/2

3 3 8 1=p3 3 6 7 -1/2

3 4 4 1/2 4 5 8
p3=2

3 5 5 1/2 6 7 8
p3=2

3 6 6 -1/2
3 7 7 -1/2

4 4 8 �1=2p3
5 5 8 �1=2p3
6 6 8 �1=2p3
7 7 8 �1=2p3
8 8 8 �1=p3

The fundamental representation of SU(3) is a triplet. The three color charges of a quark

and the u, d, s quarks (neglecting the different masses of these quarks) form the funda-

mental representation of a SU(3) symmetry group.
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Appendix B

Renormalization Group and the
Running of the Coupling Constant

One of the observable manifestations of vacuum fluctuations in QED is the potential

screening of the electron charge. In order to measure its charge, the electron must be

placed in an electromagnetic field, and then the reaction with the field must be stud-

ied. But on the way to the charge, a quantum probe can undergo virtual dissociation

into an e+e� pair, which forms an effective dipole, leading to a screening effect.This pro-

cess gives a contribution to the cross section proportional to �EM , depending on the

4-momentum of the photon. Therefore the inclusion of vacuum effects transforms a con-

stant (the charge) into a function, referred to as the effective charge.

In general, in any renormalizable theory, the quantum corrections cause the constant

numerical value of the coupling constant to become a function of Q2, i.e. the theory

predicts only the Q2 behaviour of the coupling constant, but not the actual value at any

given Q2. Experimentally the curve on which �(Q2) lies is selected with the condition�(�2) = ��, as shown in Fig.B.1. In QED we have �EM (0) = 1=137. The physical curve

can be represented as a function of two dimensionless arguments Q2=�2 and ��, i.e. it

can be written as ��(Q2=�2; �). However the pair �; �� can correspond to any physical

point. Renormalization invariance means that any two parameterizations must lead to the

same result: ���Q2�21 ; �1� = ���Q2�22 ; �2� ; (B.1)
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Figure B.1: The running coupling constant.

and obviously ����22�21 ; �1� = �2 ����21�22 ; �2� = �1 : (B.2)

By combining these two expressions we get the functional equation:��(x; �) = ���xt ; ��(t; �)� : (B.3)

The renormalization group is the group of all transformations from one possible parame-

terization to the other. They form a continuous, one parameter group:x! x0 = xt �! ��(t; �) : (B.4)

The renormalization group method is a systematic method of improving the results of

ordinary perturbation theory. The point is that exact solutions of the quantum field

equations must satisfy the condition of renormalization invariance. In practice we deal

with pieces of Taylor series expansions in the coupling constant. The properties of these

approximate solutions can differ significantly from those of the exact solutions because

renormalization invariance is violated in perturbation theory. These differences can be-

come important when the solution has a singularity, as occurs, for example, in the ultravi-

olet limit. The renormalization group method allows one to obtain from the approximate

result a renormalization invariant expression which coincides with the original expres-

sion at lowest order in �. The group differential equations serve as a technical tool for

realizing this program. By differentiating Eq. (B.3) one getsx� ��(x; �)�x = �(��(x; �)) : (B.5)
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It is easy to show that any function �(�) exactly satisfies Eq. (B.3). The � function can be

expressed as �(�) = � ��(x; �)�x ����x=1 : (B.6)

The renormalization group method amounts to obtaining the � function from a given

approximate solution using Eq. (B.6). Then the solution to Eq. (B.5) gives an improved

approximate solution, which, on the one hand, corresponds to the original solution to

lowest order, and, on the other hand, is renormalization invariant. In QCD, the one-loop

approximation for �s is:�s(Q2) � 4��0 ln Q2�2 ; �0 = 11� 23nf ; (B.7)

and the 2-loop approximation is:�s(Q2) � 4��0 ln Q2�2 "1� �1�20 ln ln Q2�2ln Q2�2 # �1 = 102� 383 nf : (B.8)

The renormalized coupling constant is:�s(Q2) = �s(�2)1 + �s(�2)12� (33 � 2nf ) ln Q2�2 : (B.9)

AsQ2 increases, it becomes infinitely small for short-distance interactions, and the theory

is asymptotically free. From Eq. (B.9) we see that at sufficiently low Q2 the effective

coupling will become large. The scale at which this happens is usually denoted with �2,

where: �2 = �2e� 12�(33�2nf )�s(�2) ; (B.10)

so that: �s(Q2) = 12�(33� 2nf ) ln Q2�2 : (B.11)

For Q2 >> �2 the effective coupling is small and a perturbative approach in terms of

quarks and gluons interacting weakly makes sense. For Q2 � �2 we cannot use such a

picture any longer since quarks and gluons will arrange themselves into strongly bound

clusters, namely hadrons. The value of � is not predicted by theory and it has to be

experimentally determined: we can expect it to be of the order of a typical hadronic mass.

It is experimentally measured to be � � 0:2 GeV. Thus for example, for experiments with
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Q2 � (30 GeV)2 it follows that �s � 0:2 and perturbative theory can be used. In the

large Q2 limit the quark masses can be neglected and they contribute no mass scale to

QCD. Nevertheless there is a mass scale � inherent to the theory, which enters through

renormalization.
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Appendix C

The Mellin Transform

C.1 LO case

The n-th moment of a function is defined as the Mellin transform ([74]) of f :fn(Q2) = Z 10 f(x;Q2) xn�1 dx : (C.1)

The moment of a convolution of two functions f and g has the interesting property of

being the product of the moments of the two functions:Z 10 dx xn�1 f 
 g = Z 10 dx xn�1 Z 1x dyy f �xy� g(y) = fngn : (C.2)

This makes it very convenient to work in the Mellin n-moment space, where the evolu-

tion equations can be solved analytically at a given order in �s. In fact one has:ddt�qnNS(Q2) = �s(Q2)2� P (0)nNS �qnNSddt � ��n(Q2)�Gn(Q2) � = �s(Q2)2�  P (0)nqq 2nfP (0)nqGP (0)nGq P (0)nGG !� ��n�Gn �= �s(Q2)2� P̂ (0)n� ��n�Gn � (C.3)

where P (0)nij are the nth-moments of the splitting functions P (0)ij and depend only on the

number of flavours nf and on n. They can be found in Ref.[20].

These momentum space evolution equations are usually called LO renormalization

group equations, since they were originally derived from the operator product expansion
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C.1. LO CASE

for the unpolarized structure functions. The moments P (0)nij are called anomalous dimen-

sions (there is actually a factor between the two) and they determine the logarithmic de-

pendence on Q2 for the parton distributions and so for g1. The solution to Eq. (C.3) is

very straightforward: �qnNS(Q2) = L� 2�0 P (0)nNS �qnNS� ��n(Q2)�Gn(Q2) � = L� 2�0 P̂ (0)n � ��n(Q20)�Gn(Q20) � ; (C.4)

where L = �s(Q2)=�s(Q20). One then just has to diagonalize the matrix P̂ (0) and find the

two eigenvalues ��. This can be achieved with the help of the two projection matricesP̂� that project the two eigenvalues ��:P̂� = � P̂ (0)n � �n�Î�n+ � �n� (C.5)�n� = 12 �P (0)nqq + P (0)nGG �q(P (0)nqq � P (0)nGG )2 + 8nfP (0)nqG P (0)nGq � ; (C.6)

where Î is the identity matrix. The projection matrices have the usual properties P̂ 2� =P̂�, P̂+P̂� = P̂�P̂+ = 0, and P̂+ + P̂� = Î . The matrix P̂ (0)n can then be decomposed

into: P̂ (0)n = �n+P̂+ + �n�P̂� ; (C.7)

and the matrix expression in Eq. (C.4) becomes:L� 2�0 P̂ (0)n = L� 2�0 �n+P̂+ + L� 2�0 �n� P̂� : (C.8)

The solutions to the evolution equations for the n-moments are:��n(Q2) = L� 2�0 �n� ��n��n(Q20) + �n�Gn(Q20)�+ L� 2�0 �n+ �(1� �n)��n(Q20)� �n�Gn(Q20)��Gn(Q2) = L� 2�0 �n� �(1� �n)�Gn(Q20) + �n(1� �n)�n ��n(Q20)�+ L� 2�0 �n+ ��n�Gn(Q20)� �n(1� �n)�n ��n(Q20)� ; (C.9)

where �n = P (0)nqq � �n+�n� � �n+
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C.2. NLO CASE�n = 2nfP (0)nqG�n� � �n+ :
(C.10)

Once the distributions are fixed at a particular scale Q20 (by experiment or theoretical

assumptions) their evolution is determined by the QCD dynamics of the anomalous di-

mensions at leading order in �s. After obtaining the n-moments one has to invert them

to obtain the parton distributions. This can be achieved by a numerical integration, by

using the formula:f(x;Q2) = 1� Z 10 dz Im
hei�e�(+zei�) fn=+zei�(Q2)i (C.11)

C.2 NLO case

In momentum space the evolution equations are simply given by:ddt�qnNS�(Q2) = "�s(Q2)2� P (0)nNS +��s(Q2)2� �2 P (1)nNS�#�qnNS�(Q20)ddt � ��n(Q2)�Gn(Q2) � = "�s(Q2)2�  P (0)nqq 2nfP (0)nqGP (0)nGq P (0)nGG !++ ��s(Q2)2� �2 P (1)nqq 2nfP (1)nqGP (1)nGq P (1)nGG !#
� ��n(Q20)�Gn(Q20) �= "�s(Q2)2� P̂ (0)n +��s(Q2)2� �2 P̂ (1)n#
� ��n(Q20)�Gn(Q20) � : (C.12)

The solutions to these equations are a generalization of Eq. (C.4):�qnNS�(Q2) = �1� 2�0 �s(Q2)� �s(Q20)2� �P (1)nNS� � �12�0P (0)nNS ���� L� 2�0 P (0)nNS �qnNS�(Q20)� ��n(Q2)�Gn(Q2) � = �L� 2�0 P̂ (0)n + �s(Q2)2� ÛL� 2�0 P̂ (0)n � �s(Q20)2� L� 2�0 P̂ (0)nÛ��� � ��n(Q20)�Gn(Q20) �
(C.13)
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C.2. NLO CASE

where, as before, L = �s(Q2)=�s(Q20). Also,Û = � 2�0 (P̂+R̂P̂+ + P̂�R̂P̂�) + P̂�R̂P̂+�n+ � �n� � 12�0 + P̂+R̂P̂��n� � �n+ � 12�0R̂ = P̂ (1)n � �12�0 P̂ (0)n (C.14)

and P̂� are the matrices that project the two eigenvalues ��, already defined in Eq. (C.5).

The explicit form of the solution in Eq. (C.13) can be found ([20]) by using the property

given in Eq. (C.8).

The solutions for the nth moment of the quark distributions can be inverted to get�q, or they can be used to get the n-th moments of g1:

gn1 (Q2) = 12Xq;�q e2q h�1 + �s2�Cnq ��qn + �s2� 2CnG�Gn(Q2)i : (C.15)

By comparing Eq. (4.32) and Eq. (C.15) it appears clear that the Wilson coefficient func-

tions Cni are the first order approximation in �s of the coefficients Eqi introduced in sec-

tion 4.1: Enq = 1 + �s2�CnqEnG = 0 + �s2�CnG: (C.16)

In any NLO (and beyond) treatment Wilson coefficients and splitting functions are not

uniquely defined, but the measurable quantity g1 has to be independent of the scheme

convention. The requirements of convention independence can be easily derived, using

eqs(C.13) and (C.15). Let us suppose that we choose a different factorization scheme in

the NS sector: CnNS ! C 0nNS = CnNS +�nNS : (C.17)

Up to order O(�2s) also the splitting functions P (1)NS need to be redefined:P (1)nNS ! P 0(1)nNS = P (1)nNS + �02 �nNS : (C.18)

Similarly, in the singlet sector, a change in the factorization scheme brings a change in the

matrix P̂ (1): Ĉn ! Ĉ 0n = Ĉn + �̂nP̂ (1)n ! P̂ 0(1)n = P̂ (1)n + �02 �̂n � [�̂n; P̂ (0)℄ ; (C.19)
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C.2. NLO CASE

where the upper row in the Ĉ matrix corresponds to the quark Cq = Cqq and gluonCG = CqG Wilson coefficients, while the second row is introduced to keep the treatment

as symmetric as possible, and it does not bring any contribution. It is worth noting that

the transformations of the splitting functions in Eq. (C.19) are not fixed by the change in

the first row of the coefficient functions alone, since the lower row in �̂ remains undeter-

mined. From all these results, it is clear that a consistent (factorization scheme indepen-

dent) analysis of g1 requires the knowledge of all splitting functions P (1) and coefficient

functions Cq;G. Such an analysis has been performed in very few schemes.
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Appendix D�2 distribution and z2 test

D.1 �2 distribution

Let us consider a quantity x taken from a gaussian distribution with true mean equal to

zero and variance �2 = 1. The probability of measuring a value of x between a and b is

([38]): P (a < x < b) = 1p2� Z ba e�x2=2dx : (D.1)

Given N measurements of x, let us define the �2 as the sum of the squares of the mea-

sured values: �2 = x21 + x22 + :::+ x2N : (D.2)

The probability distribution of �2 is:P (�2) = P (x21 + x22 + :::+ x2N < �2) == � 1p2��N=2 Zx21+x22+:::+x2N<�2 e�(x21+x22+:::+x2N)=2dx1:::dxN= � 1p2��N=2 Zr2<�2 e�r2=2dVN= 12N=2� �N2 � Z �20 e�u=2uN=2�1du ; (D.3)

where dVN is the element of volume of a N -dimensional sphere:dVN = N�N=2rN�1�(1 +N=2) dr ; (D.4)
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D.2. Z2 TEST

with r2 = x21 + x22 + ::: + x2N , and u = r2. The probability density f(�2) is the derivative

of the probability distribution P (�2):f(�2) = 12N=2� �N2 �e��2=2(�2)N=2�1 : (D.5)

The expectation value of �2 is�:E(�2) = 12N=2� �N2 � Z 10 �2e��2=2(�2)N=2�1d�2 = N ; (D.6)

where we used the fact that �(x) = R10 e�ttx�1dt.
The variance of the distribution is�2�2 = E((�2)2)� (E(�2))2 = N(N + 2)�N2 = 2N : (D.7)

In the general case of a distribution with measured mean �x and variance �2 the �2 is

defined as: �2 = NXi=1 (xi � �x)2�2 : (D.8)

In this case it’s important to notice that the expectation value of �2 will not be N butN � 1, since the meaning of N in eqs.(D.6) and (D.7) is that of total degrees of freedom,

and in Eq. (D.8) the total degrees of freedom are N � 1, because of the condition on the

average:
Pxi=N = �x.

Fig. D.1 shows the probability density f(�2) for different values of N , compared to

the gaussian distribution with same variance and mean value. The two distributions tend

to overlap for large N .

D.2 z2 test

Let us consider the general case of measuring xi with different accuracies �i. Let us also

suppose that the errors are randomly distributed around zero, i.e.:xi = x+ "i with E("i) = 0; E("2i ) = �2i : (D.9)�The expectation value E(x) of a quantity x can be obtained from its probability density f as E(x) =R xf(x)dx
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D.2. Z2 TEST
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Figure D.1: �2 distributions (dashed) and gaussian distributions (solid) having same vari-
ance 2N and mean value N . As N increases the two distributions tend to overlap.

The weighted average �x is given by �x = Pi xi�2i =Pi 1�2i , which gives a best estimate for

the errors "i given by: �"i = xi � �x : (D.10)

We expect, in absence of any bias on the measurement, that these quantities are normally

distributed around zero with variance �2i , so that �"i=�i are expected to follow a gaussian

distribution with mean equal to zero, and unit variance. In this case, the sumz2 = 1N � 1 NXi=1 � �"i�i�2
(D.11)

follows a �2 distribution with expectation value equal to 1 and variance equal to 2(N � 1).
Using normal propagation of errors, we get, for the expectation value of z and its 68%

confidence limit, the values: z = 1� 1p2(N � 1) : (D.12)
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Appendix E

Statistical errors

E.1 Independent variables

Given M independent measurements Ei of the same quantity E with different standard

deviations �i, the best estimate for E is given by the weighted mean:E = MXi=1 Ei�2iMXi=1 1�2i ; 1�2 = MXi=1 1�2i ; (E.1)

where � is the standard deviation in the weighted mean. For example, if two quantitiesEA � �A and EB � �B are calculated from different data sets, namely A and B, withA \ B = ?, then they are independent, and the best estimate of E, over the whole data

set A+B is given by the weighted mean.

The error of any function f(EA; EB) has the form:�f =s� �f�EA�A�2 +� �f�EB �B�2 : (E.2)

E.2 Correlated variables

When the statistics involved in calculating EA and EB are not independent, the error for

a function f(EA; EB) has the expression:�f =s� �f�EA�A�2 +� �f�EB �B�2 + 2 �f�EA �f�EB cov(EA; EB) ; (E.3)
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E.2. CORRELATED VARIABLES

where the last term takes care of the correlations between EA and EB .

Given a large number N of measurements EAi , the standard deviation �A is empiri-

cally defined as: �2A = 1N � 1 NXi=1(EAi �EA)2 ; (E.4)

while the covariance between EA and EB is given by:

cov(EA; EB) = 1N � 1 NXi=1(EAi �EA)(EBi �EB) ; (E.5)

where EA and EB are the averages of EAi and EBi�. When EA and EB are independent,

over a large number N of measurements they will fluctuate around their average in an

uncorrelated way, so that the covariance is zero and one recovers the usual formula for

the propagation of errors in a function of independent variables. From Eq. (E.4) it follows

that

cov(EA; EA) = �2A ; (E.6)

while the linearity properties of the covariance follow from Eq. (E.5):

cov(aEA + bEB ; E) = a cov(EA; E) + b cov(EB ; E) (E.7)

that will prove to be useful later (here a and b are constants).

It is worth noting that the covariance is a property only of EA and EB , and not of the

specific form of the function f .

E.2.1 Totally correlated variables

In this case in which the set A is divided into M disjunct samples, the relationEA�2A = MXi=1 Ei�2i (E.8)

holds (see Eq. (E.1)), where the indices i indicate the independent subsets of A. If B is

a subset of A, then for a particular bin corresponding to set B, the relation between EA
and EB is given by the weighted mean:EA = �2A�2BEB + �2A�2A�BEA�B ; (E.9)�The averaged value of E is supposed to be a good approximation of the true value, so they are assumed
to be equal, and no distinction is going to be made between the two.
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E.2. CORRELATED VARIABLES

where the remaining terms containing the values of Ei in the other bins i have gone intoA � B. The relation between EA and EB is then linear and one can apply eqs.(E.6) and

(E.7) to get the covariance cov(EA; EB):
cov(EA; EB) = �2A�2B cov(EB ; EB) + �2A�2A�B cov(EA�B ; EB) = �2A�2B �2B = �2A ; (E.10)

where the independence of EA�B and EB was used, giving cov(EA�B; EB) = 0.

The standard deviation in f is then:�f =s� �f�EA�2 �2A +� �f�EB�2 �2B + 2 �f�EA �f�EB �2A B � A : (E.11)

E.2.2 Partially correlated variables

A more difficult case is when the two quantities EA and EB under consideration are

calculated using two data sets that have a non zero intersection. In this case the two

quantities are said to be only partially correlated.

To calculate the covariance two setsA0 andB0 are introduced, such thatA = A0+A\B
and B = B0 +A \B. It must be:EA�2A = EA0�2A0 + EA\B�2A\BEB�2B = EB0�2B0 + EA\B�2A\B ;

(E.12)

so that EA = �2A�2A0EA0 + �2A�2BEB � �2A�2B0EB0 : (E.13)

The covariance cov(EA; EB) is:

cov(EA; EB) = �2A�2A0 cov(EA0 ; EB) + �2A�2B cov(EB ; EB)� �2A�2B0 cov(EB0 ; EB)= �2A � �2A�2B0 cov(EB0 ; EB)= �2A � �2A�2B0 �2B ; (E.14)
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E.2. CORRELATED VARIABLES

where the fact that cov(EA0 ; EB) = 0 was used (A0 and B are independent) together

with cov(EB ; EB0) = �2B as follows from Eq. (E.10), since B0 � B. Using the relation1�2B = 1�2B0 + 1�2A\B , one gets the covariance in the case of partially correlated variables:

cov(EA; EB) = �2A�2B�2A\B : (E.15)

This expression recovers both the errors for the case of independent variables and the

one for totally correlated, in the two limits of �A\B = 1 and �B = �A\B . In this case

however the knowledge ofEA��A andEB��B alone is not enough to calculate the error

in any expression including A and B, since one also needs the error in the intersectionA \B.

Table E.1 contains a compilation of errors for some functions, for the three cases of

independent, completely and partially correlated quantities.
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Independent Completely Correlated Partially Correlatedf �f f �f f �fEA � EB q�2A + �2B EA �EB qj�2A � �2B j EA � EB s�2A + �2B � 2�2A�2B�2A\BEA � EBq�2A + �2B 1

EA �EBqj�2A � �2B j 1 EA � EBs�2A + �2B � 2�2A�2B�2A\B 1EAEB EAEBs �2AEA2 + �2BEB2 EAEB EAEBs �2AEA2 + �2BEB2 � 2EAEB �2A EAEB EAEBs �2AEA2 + �2BEB2 � 2EAEB �2A�2B�2A\B

Table E.1: This table shows the errors for some simple functions, useful to check the agreement between two quantities EA

and EB . The cases of complete independence, complete and partial correlation (that is one of the two, either EA or EB , is
calculated over a data set that is included in the other) are considered.
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Appendix F

Tables with numerical results
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TOP BOTTOM

bin y bin x bin N)!cs N)!
dis

N(!cs N(!
dis

N)!cs N)!
dis

N(!cs N(!
dis

1 1 1 20619 21845 20219 21362 4244 13449 4281 13045
2 1 2 4317 9593 4214 9626 1928 7878 1890 7724
3 1 3 3540 10895 3481 10480 2077 9517 2132 9111
4 1 4 3299 11984 3187 11715 2393 11046 2251 10875
5 1 5 3091 13832 3005 13493 2615 12570 2486 12500
6 1 6 2922 14920 2760 14457 2585 13681 2539 13565
7 1 7 2630 15563 2513 15335 2435 14717 2374 14690
8 1 8 2283 15473 2227 15311 2280 14867 2224 14829
9 1 9 74 9792 76 9407 72 9550 88 9287
10 2 9 2023 7118 1968 6866 2022 6726 1968 6497
11 1 10 40 10149 36 9923 62 9986 37 9749
12 2 10 1724 7751 1701 7536 1851 7296 1779 7098
13 1 11 22 9946 17 9935 23 9706 19 9758
14 2 11 1278 8147 1216 8204 1380 7770 1364 7837
15 1 12 19 10971 16 10812 15 10727 9 10442
16 2 12 971 8159 934 8082 997 7747 991 7610
17 1 13 13 11610 14 11741 8 11355 13 11052
18 2 13 612 8060 598 7735 697 7513 664 7443
19 1 14 7 12606 7 12258 12 11975 12 11922
20 2 14 343 7187 355 7320 399 7112 371 7124
21 1 15 2 13305 2 12963 3 12491 6 12512
22 2 15 193 6793 182 6990 212 6775 219 6704
23 1 16 1 9925 2 9606 0 9101 1 9036
24 2 16 4 6348 5 6332 1 6046 5 6201
25 3 16 86 4034 83 4066 83 3891 92 3884
26 1 17 0 10024 1 10003 2 9527 2 9396
27 2 17 1 5675 3 5879 1 5707 5 5724
28 3 17 42 3762 32 3993 48 3796 36 3871
29 1 18 1 10741 1 10928 4 9820 1 9881
30 2 18 1 5219 1 5205 2 4961 2 4996
31 3 18 15 3581 11 3534 19 3498 17 3674
32 1 19 2 10731 2 10909 1 9829 1 9650
33 2 19 1 4939 2 5229 1 4834 3 4883
34 3 19 6 3155 8 3295 8 3022 8 3285
35 1 20 0 10483 1 10801 1 9792 0 9619
36 2 20 2 4332 2 4351 0 3936 2 4137
37 3 20 2 2655 6 2764 7 2609 2 2710
38 1 21 0 10153 0 10166 0 9187 2 9103
39 2 21 0 3311 1 3431 0 3037 0 3140
40 3 21 2 2173 3 2374 1 2200 1 2342
41 1 22 0 8563 1 8548 0 7744 1 7540
42 2 22 0 2670 0 2788 1 2457 0 2564
43 3 22 2 1816 0 2048 1 1755 1 1880
44 1 23 0 8045 0 8299 1 7473 1 7703
45 2 23 0 1391 1 1562 0 1332 1 1440
46 1 24 0 6551 0 6828 0 5997 1 6295
47 1 25 0 4106 0 4223 1 3766 0 3841
48 1 26 0 2030 0 2114 1 1825 1 1998
49 1 27 0 680 1 778 0 657 1 649

Table F.1: Events selected from the 98b4 production
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TOP BOTTOMx bin y bin bin N)!cs N)!
dis

N(!cs N(!
dis

N)!cs N)!
dis

N(!cs N(!
dis

1 1 1 23230 78801 23594 79541 23296 84283 23314 84198
2 1 2 10088 47367 10070 47859 10243 50478 9941 51030
3 1 3 11310 56497 11382 56755 11387 60243 11291 60690
4 1 4 12335 66716 12327 67361 12548 70069 12439 70714
5 1 5 13361 76912 13511 77147 13648 80974 13615 81944
6 1 6 13770 84854 13506 86535 13793 88766 13658 88879
7 1 7 13237 91006 13322 92107 13396 93955 12953 95161
8 1 8 12149 91307 12146 93457 12065 95820 12219 96179
9 1 9 474 58056 461 58735 425 61259 413 61829
10 2 9 10859 41958 11148 42439 10884 42567 10899 43493
11 1 10 255 61416 266 62015 239 64525 285 65351
12 2 10 9804 45792 9970 46399 9656 47015 9790 47360
13 1 11 136 60941 155 61644 157 64228 135 65104
14 2 11 7706 49595 7767 50413 7630 51057 7458 52798
15 1 12 91 66918 102 68192 94 70155 108 71665
16 2 12 5682 49596 5651 50826 5624 51323 5661 52401
17 1 13 57 72984 71 74343 75 76957 72 77825
18 2 13 3751 48826 3784 49942 3549 50750 3647 51277
19 1 14 49 76179 38 77755 57 80643 59 82647
20 2 14 2206 46350 2205 47325 2161 47380 2141 49241
21 1 15 22 80783 35 82053 26 85372 42 87324
22 2 15 1112 43736 1131 45482 1048 45562 1101 47347
23 1 16 12 59504 10 61061 13 64340 19 64836
24 2 16 29 39688 31 41181 33 42041 32 43092
25 3 16 545 25801 563 27029 578 26056 532 27702
26 1 17 11 61833 16 63308 10 66481 11 67771
27 2 17 21 36717 11 38255 16 39129 17 40218
28 3 17 227 24760 240 26205 224 25830 256 27081
29 1 18 8 66058 7 67282 7 71099 7 72723
30 2 18 5 33132 4 34551 14 35086 19 36681
31 3 18 94 22388 95 23667 108 23409 115 24825
32 1 19 9 65959 3 67854 5 71846 4 73127
33 2 19 5 31790 6 33768 9 34218 7 35434
34 3 19 51 20094 38 21572 49 20915 44 22393
35 1 20 4 64185 6 66216 6 70704 3 72427
36 2 20 4 27335 5 28721 6 28899 1 30547
37 3 20 19 17116 21 18721 17 17749 30 19397
38 1 21 4 61484 7 63267 2 68317 2 70583
39 2 21 3 20453 3 22078 1 22153 1 23169
40 3 21 9 14389 11 15986 9 15001 6 16594
41 1 22 4 51270 5 53097 4 57686 1 59718
42 2 22 3 16940 1 18144 4 18524 4 19267
43 3 22 6 12117 8 13390 8 12707 3 14042
44 1 23 1 49063 3 52015 2 56091 3 58639
45 2 23 1 9276 3 10260 0 9563 3 10956
46 1 24 3 39718 3 42746 3 44475 4 47472
47 1 25 3 24015 2 26041 2 27116 1 29102
48 1 26 2 12033 3 13197 1 13622 1 14547
49 1 27 0 4146 1 4527 1 4131 2 4627

Table F.2: Events selected from the 00b1 production
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1998 2000
bin < x > < y > < Q2 > g1=F1 �stat(g1=F1) g1=F1 �stat(g1=F1)
1 0.0041 0.8842 0.2107 -0.03438 0.04486 -0.00538 0.01305
2 0.0070 0.8612 0.3033 0.01962 0.03926 0.00417 0.01306
3 0.0085 0.8451 0.3720 -0.05434 0.03190 -0.00641 0.01100
4 0.0105 0.8264 0.4494 -0.00520 0.02749 -0.00031 0.00964
5 0.0130 0.8036 0.5369 -0.00110 0.02416 -0.00542 0.00866
6 0.0160 0.7785 0.6411 -0.00662 0.02238 -0.00314 0.00806
7 0.0190 0.7511 0.7508 0.01795 0.02109 0.00346 0.00770
8 0.0234 0.7227 0.8684 0.02229 0.02076 0.00370 0.00761
9 0.0278 0.6008 0.8619 -0.04130 0.02626 0.00392 0.00988
10 0.0278 0.8161 1.1708 -0.04768 0.03230 0.00712 0.01168
11 0.0330 0.5566 0.9542 -0.01889 0.02724 0.00697 0.01020
12 0.0330 0.7923 1.3583 -0.02722 0.02912 -0.00787 0.01061
13 0.0395 0.5085 1.0403 0.06593 0.02959 0.00994 0.01107
14 0.0395 0.7595 1.5538 0.04178 0.02616 0.02147 0.00961
15 0.0470 0.4709 1.1463 -0.01333 0.03034 0.03470 0.01129
16 0.0470 0.7352 1.7897 -0.00104 0.02523 0.01725 0.00925
17 0.0562 0.4335 1.2618 0.03447 0.03161 0.01826 0.01164
18 0.0562 0.7104 2.0678 -0.02604 0.02462 0.00523 0.00901
19 0.0670 0.3974 1.3790 0.01285 0.03308 0.04894 0.01226
20 0.0670 0.6808 2.3624 0.04661 0.02485 0.02964 0.00909
21 0.0800 0.3629 1.5018 0.01638 0.03490 0.04209 0.01292
22 0.0800 0.6508 2.6932 0.05217 0.02532 0.05135 0.00921
23 0.0954 0.2908 1.4368 0.01016 0.05117 0.03974 0.01880
24 0.0954 0.4646 2.2956 0.07554 0.03630 0.05487 0.01332
25 0.0954 0.6817 3.3683 0.03286 0.03042 0.07172 0.01109
26 0.1137 0.2608 1.5358 0.06751 0.05531 0.07843 0.02028
27 0.1137 0.4292 2.5275 0.11449 0.04016 0.07424 0.01467
28 0.1137 0.6423 3.7824 0.10270 0.03099 0.07064 0.01130
29 0.1356 0.2362 1.6589 0.14979 0.05801 0.07643 0.02120
30 0.1356 0.4047 2.8422 0.06241 0.04392 0.10224 0.01590
31 0.1356 0.6121 4.2988 0.06120 0.03223 0.08232 0.01188
32 0.1620 0.2095 1.7578 0.12938 0.06394 0.09091 0.02326
33 0.1620 0.3737 3.1355 0.18180 0.04662 0.12323 0.01692
34 0.1620 0.5800 4.8664 0.15808 0.03442 0.10847 0.01264
35 0.1930 0.1882 1.8842 0.21856 0.06922 0.14304 0.02526
36 0.1930 0.3487 3.4910 0.14384 0.05212 0.14278 0.01879
37 0.1930 0.5475 5.4813 0.11297 0.03822 0.15276 0.01388
38 0.2300 0.1730 2.0608 0.11450 0.07400 0.16634 0.02680
39 0.2300 0.3306 3.9382 0.19025 0.06026 0.16791 0.02189
40 0.2300 0.5120 6.0991 0.18789 0.04288 0.18407 0.01555
41 0.2740 0.1614 2.2896 0.03998 0.08206 0.19944 0.02968
42 0.2740 0.3062 4.3438 0.24074 0.06925 0.17399 0.02491
43 0.2740 0.4779 6.7795 0.25243 0.04882 0.18294 0.01756
44 0.3267 0.1849 3.1286 0.32244 0.06713 0.26050 0.02429
45 0.3267 0.4423 7.4840 0.26307 0.05850 0.24719 0.02094
46 0.3890 0.2113 4.2593 0.31645 0.06042 0.29640 0.02195
47 0.4640 0.2003 4.8115 0.22510 0.07637 0.34914 0.02804
48 0.5500 0.1937 5.5227 0.44695 0.10576 0.34747 0.03870
49 0.6600 0.2143 7.3221 0.34912 0.15105 0.38987 0.05706

Table F.3: The values g1=F1 and its statistical error, for each kinematic bin.
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bin RC Align. A2 R
1 0.013079 0.000500 0.000019 0.001538
2 0.010240 0.000756 0.000032 0.001270
3 0.008581 0.000572 0.000033 0.001056
4 0.007066 0.000474 0.000035 0.000952
5 0.005711 0.000587 0.000035 0.001007
6 0.004447 0.001043 0.000032 0.000978
7 0.003407 0.000333 0.000026 0.000862
8 0.002133 0.000411 0.000016 0.000480
9 0.001566 0.001318 0.000001 0.000519
10 0.002086 0.000406 0.000006 0.000285
11 0.001672 0.001199 0.000020 0.000395
12 0.001426 0.000248 0.000014 0.000212
13 0.001973 0.000843 0.000049 0.000289
14 0.001289 0.000262 0.000043 0.000154
15 0.002238 0.000836 0.000085 0.000651
16 0.001469 0.000544 0.000080 0.000335
17 0.002337 0.002050 0.000132 0.001055
18 0.001731 0.000355 0.000130 0.000547
19 0.002246 0.001283 0.000191 0.001465
20 0.001789 0.000509 0.000192 0.000877
21 0.002069 0.000387 0.000265 0.001885
22 0.001834 0.000466 0.000269 0.001471
23 0.002243 0.002160 0.000354 0.002432
24 0.002013 0.001308 0.000344 0.002172
25 0.002182 0.000269 0.000363 0.002153
26 0.002195 0.002832 0.000452 0.002338
27 0.001712 0.002322 0.000435 0.002800
28 0.001806 0.000531 0.000450 0.002656
29 0.002944 0.003890 0.000555 0.002719
30 0.002201 0.001396 0.000526 0.003917
31 0.001900 0.000548 0.000532 0.003093
32 0.004459 0.002526 0.000659 0.003534
33 0.003390 0.001667 0.000604 0.004833
34 0.002855 0.000365 0.000598 0.003625
35 0.006417 0.003484 0.000735 0.004572
36 0.004979 0.002239 0.000648 0.005423
37 0.004103 0.001192 0.000631 0.004348
38 0.008282 0.001679 0.000793 0.005484
39 0.006105 0.001067 0.000659 0.005970
40 0.005031 0.000627 0.000624 0.005304
41 0.010004 0.002272 0.000790 0.006168
42 0.007093 0.003450 0.000613 0.006760
43 0.005852 0.000520 0.000552 0.006452
44 0.010298 0.003567 0.000634 0.007212
45 0.006398 0.000786 0.000399 0.007773
46 0.010566 0.004979 0.000369 0.008608
47 0.009563 0.003461 0.000052 0.010243
48 0.006677 0.006457 0.000421 0.012096
49 0.003846 0.005059 0.001255 0.015004

Table F.4: Systematic errors on g1=F1, for each kinematic bin, common to 1998 and 2000
data.
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bin Background Target Beam Normalization TSF Total
1 0.000048 0.002063 0.000877 0.004892 0.002037 0.014380
2 0.000068 0.001830 0.000778 0.000724 0.000810 0.010592
3 0.000222 0.001710 0.000727 0.001506 0.000992 0.009046
4 0.000023 0.001550 0.000659 0.000036 0.000051 0.007342
5 0.000005 0.001350 0.000574 0.000289 0.000057 0.006018
6 0.000029 0.001111 0.000472 0.000072 0.000011 0.004825
7 0.000073 0.000873 0.000371 0.000043 0.000020 0.003656
8 0.000084 0.000524 0.000223 0.000155 0.000006 0.002303
9 0.000142 0.000178 0.000076 0.000144 0.000000 0.002130
10 0.000164 0.000178 0.000076 0.000090 0.000000 0.002161
11 0.000058 0.000230 0.000098 0.000290 0.000000 0.002130
12 0.000083 0.000230 0.000098 0.000186 0.000000 0.001498
13 0.000176 0.000737 0.000313 0.000794 0.000000 0.002448
14 0.000111 0.000737 0.000313 0.000531 0.000000 0.001640
15 0.000031 0.001317 0.000560 0.000393 0.000000 0.002888
16 0.000002 0.001317 0.000560 0.000325 0.000000 0.002174
17 0.000067 0.002024 0.000860 0.000707 0.000000 0.004016
18 0.000050 0.002024 0.000860 0.000198 0.000000 0.002884
19 0.000021 0.002844 0.001209 0.000635 0.000000 0.004339
20 0.000076 0.002844 0.001209 0.000607 0.000000 0.003767
21 0.000023 0.003820 0.001623 0.000712 0.000000 0.005078
22 0.000072 0.003820 0.001623 0.000655 0.000000 0.004845
23 0.000009 0.004958 0.002107 0.000830 0.000000 0.006742
24 0.000070 0.004958 0.002107 0.000925 0.000000 0.006363
25 0.000030 0.004958 0.002107 0.000540 0.000000 0.006239
26 0.000031 0.006287 0.002672 0.001266 0.000000 0.008172
27 0.000053 0.006287 0.002672 0.001204 0.000000 0.008030
28 0.000047 0.006287 0.002672 0.000969 0.000000 0.007643
29 0.000000 0.007844 0.003334 0.001868 0.000000 0.010374
30 0.000000 0.007844 0.003334 0.000909 0.000000 0.009791
31 0.000000 0.007844 0.003334 0.000730 0.000000 0.009323
32 0.000000 0.009670 0.004110 0.001853 0.000000 0.012370
33 0.000000 0.009670 0.004110 0.001704 0.000000 0.012300
34 0.000000 0.009670 0.004110 0.001353 0.000000 0.011576
35 0.000000 0.011744 0.004991 0.002517 0.000000 0.015618
36 0.000000 0.011744 0.004991 0.001493 0.000000 0.014990
37 0.000000 0.011744 0.004991 0.001077 0.000000 0.014197
38 0.000000 0.014122 0.006002 0.001915 0.000000 0.018473
39 0.000000 0.014122 0.006002 0.001810 0.000000 0.017698
40 0.000000 0.014122 0.006002 0.001581 0.000000 0.017093
41 0.000000 0.016811 0.007145 0.001446 0.000000 0.021901
42 0.000000 0.016811 0.007145 0.002177 0.000000 0.021135
43 0.000000 0.016811 0.007145 0.002032 0.000000 0.020353
44 0.000000 0.019832 0.008429 0.003119 0.000000 0.025402
45 0.000000 0.019832 0.008429 0.002123 0.000000 0.023895
46 0.000000 0.023124 0.009828 0.002912 0.000000 0.029162
47 0.000000 0.026684 0.011341 0.002261 0.000000 0.032467
48 0.000000 0.030226 0.012846 0.003803 0.000000 0.036412
49 0.000000 0.033914 0.014413 0.002954 0.000000 0.040419

Table F.5: Systematic errors on g1=F1, for each kinematic bin, for 1998 data.
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bin Background Target Beam Normalization Total
1 0.000008 0.000215 0.000108 0.000927 0.013213
2 0.000014 0.000167 0.000083 0.000947 0.010391
3 0.000026 0.000257 0.000128 0.000963 0.008723
4 0.000001 0.000012 0.000006 0.000991 0.007214
5 0.000024 0.000217 0.000108 0.001027 0.005924
6 0.000014 0.000126 0.000063 0.001069 0.004794
7 0.000014 0.000138 0.000069 0.001117 0.003706
8 0.000014 0.000148 0.000074 0.001170 0.002519
9 0.000013 0.000157 0.000078 0.001449 0.002567
10 0.000024 0.000285 0.000142 0.001027 0.002399
11 0.000021 0.000279 0.000139 0.001589 0.002648
12 0.000024 0.000315 0.000157 0.001058 0.001840
13 0.000026 0.000397 0.000199 0.001770 0.002832
14 0.000057 0.000859 0.000429 0.001104 0.001975
15 0.000080 0.001388 0.000694 0.001935 0.003507
16 0.000040 0.000690 0.000345 0.001141 0.002114
17 0.000035 0.000730 0.000365 0.002123 0.003996
18 0.000010 0.000209 0.000105 0.001181 0.002211
19 0.000080 0.001958 0.000979 0.002336 0.004374
20 0.000048 0.001186 0.000593 0.001231 0.002746
21 0.000058 0.001684 0.000842 0.002578 0.004271
22 0.000071 0.002054 0.001027 0.001285 0.003570
23 0.000037 0.001590 0.000795 0.003285 0.005449
24 0.000051 0.002195 0.001097 0.001898 0.004497
25 0.000066 0.002869 0.001434 0.001201 0.004619
26 0.000036 0.003137 0.001569 0.003667 0.006653
27 0.000034 0.002969 0.001485 0.002054 0.005621
28 0.000033 0.002826 0.001413 0.001262 0.004730
29 0.000000 0.003057 0.001529 0.004024 0.007706
30 0.000000 0.004090 0.002045 0.002153 0.006925
31 0.000000 0.003293 0.001646 0.001300 0.005385
32 0.000000 0.003636 0.001818 0.004495 0.008713
33 0.000000 0.004929 0.002465 0.002302 0.008583
34 0.000000 0.004339 0.002169 0.001348 0.006865
35 0.000000 0.005722 0.002861 0.004915 0.011826
36 0.000000 0.005711 0.002856 0.002412 0.010307
37 0.000000 0.006110 0.003055 0.001405 0.009285
38 0.000000 0.006654 0.003327 0.005197 0.013582
39 0.000000 0.006716 0.003358 0.002482 0.011706
40 0.000000 0.007363 0.003681 0.001480 0.011143
41 0.000000 0.007977 0.003989 0.005363 0.015881
42 0.000000 0.006960 0.003480 0.002619 0.013255
43 0.000000 0.007317 0.003659 0.001563 0.012076
44 0.000000 0.010420 0.005210 0.004433 0.018071
45 0.000000 0.009887 0.004944 0.001663 0.015070
46 0.000000 0.011856 0.005928 0.003670 0.019996
47 0.000000 0.013966 0.006983 0.003714 0.021586
48 0.000000 0.013899 0.006949 0.003683 0.022086
49 0.000000 0.015595 0.007797 0.003173 0.024107

Table F.6: Systematic errors on g1=F1, for each kinematic bin, for 2000 data.
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Appendix G

I joined the HERMES collaboration in January 1999. I spent the summer of 1999 in Ham-

burg, where I became acquainted with the detector, the data analysis and the life in a big

collaboration. TRD maintainance and data quality were among my duties in that period,

and whenever I was in Hamburg. In that period I started building a code that could per-

form the g1 analysis. I first worked on data from 1997, to obtain results in agreement with

the published gp1 paper. I then started analyzing data from 1998. The analysis was done in

conjunction with another PhD student, Christoph Weiskopf. Independent analysis codes

were developed to extract the measured asymmetry. The agreement of the two analy-

ses on the measured asymmetry was the starting point for further studies we both made

separately: I worked on tests on the stability of the asymmetry and he worked mainly on

the PID and systematic errors. Uta Stösslein was the coordinator of the g1 group, and she

focused on yet other aspects of the analysis, such as the radiative corrections. In order

to be able to extend the kinematic region to low x I determined the trigger efficiencies

which I have studied for all productions from 1998 to 2000. Results on gd1 from 1998 data

were released in Zeuthen in July 2001 by the HERMES collaboration.

In 2001 I started to work on the next-to-leading order QCD fits, on a code used by the

SMC Collaboration in a published paper. HERMES gd1 results based on 2000 data were

released in February 2002. Once the results on gd1 with the high precision of 2000 data

were obtained, new QCD fits could be performed. I developed a method to obtain the

statistical error bands, and in June 2002 obtained the results shown in this thesis.
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